-
- Patrick O'Leary, Michael Nicolakis, Mark A Lorenz, Leonard I Voronov, Michael R Zindrick, Alexander Ghanayem, Robert M Havey, Gerard Carandang, Mark Sartori, Ioannis N Gaitanis, Stanley Fronczak, and Avinash G Patwardhan.
- Musculoskeletal Biomechanics Laboratory, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, 5th Ave. and Roosevelt Rd., Hines, IL 60141, USA.
- Spine J. 2005 Nov 1;5(6):590-9.
Background ContextTotal disc replacement (TDR) has been recommended to reduce pain of presumed discogenic origin while preserving spinal motion. The floating core of Charité TDR is professed to allow the replication of the kinematics of a healthy disc under physiologic loads. While segmental motion after Charité TDR has been measured, little is known about the effects of a physiologic compressive preload on vertebral motion and the motion of prosthesis components after TDR.Purpose(1) Does Charité TDR allow restoration of normal load-displacement behavior of a lumbar motion segment under physiologic loads? (2) How do the prosthesis components move relative to each other under physiologic loads when implanted in a lumbar motion segment?Study DesignA biomechanical study using human lumbar spines (L1-sacrum).MethodsFive lumbar spines (age: 52+/-9.3) were used. Specimens were tested under flexion (8 Nm) and extension (6 Nm) moments with compressive follower preloads of 0 N and 400 N in the following sequence: (i) intact, (ii) Charité TDR at L5-S1, (iii) simulated healed fusion at L5-S1 with Charité TDR at L4-L5. Segmental motion was measured optoelectronically. Motions between prosthesis end plates and core were visually assessed using sequential digital video-fluoroscopy over the full range of motion. Here we report on kinematics of 10 Charité TDRs: 5 at L5-S1 and 5 at L4-L5.ResultsCharité TDR increased the flexion-extension range of motion of lumbar segments (p<.05). At 400 N preload, the range of motion increased from intact values of 6.8+/-4.4 to 10.0+/-2.4 degrees at L5-S1 and from 7.0+/-2.6 to 10.8+/-2.9 degrees at L4-L5. Charité TDR increased segmental lordosis by 8.1+/-6.9 degrees at L5-S1 (p<.05) and 5.4+/-3.5 degrees at L4-L5 (p<.05). Four patterns of prosthesis component motion were noted: (1) angular motion only between the upper end plate and core, with little or no visual evidence of core translation (9 of 10 TDRs at 0 N preload and 5 of 10 TDRs at 400 N preload); (2) lift-off of upper prosthesis end plate from core or of core from lower end plate (observed in extension in 9 of 10 TDRs under 0 N preload only); (3) core entrapment, resulting in a locked core over a portion of the range of motion (observed in extension in 8 of 10 TDRs under 400 N preload); (4) angular motion between both the upper and lower end plates and core, with visual evidence of core translation (1 of 10 TDRs at 0 N preload, 5 of 10 TDRs at 400 N preload). The pattern of load-displacement curves was substantially changed under a physiologic preload in 8 of 10 TDRs; instead of a relatively gradual change in angle with changing moment application as seen for an intact segment, the TDR displayed regions of both relatively small and relatively large angular changes with gradual moment application.ConclusionsCharité TDR restored near normal quantity of flexion-extension range of motion under a constant physiologic preload; however, the quality of segmental motion differed from the intact case over the flexion-extension range. Whereas some TDRs showed visual evidence of core translation, the predominant angular motion within the prosthesis occurred between the upper end plate and the polyethylene core. Likely factors affecting the function of the Charité TDR include implant placement and orientation, intraoperative change in lordosis, and magnitude of physiologic compressive preload. Further work is needed to assess the effects of the prosthesis motion patterns identified in the study on the load sharing at the implanted level and polyethylene core wear.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.