• Neuroscience · Jan 2000

    Anticonvulsant A(1) receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats.

    • J Brockhaus and K Ballanyi.
    • II. Physiologisches Institut, Universität Göttingen, Humboldtallee 23, D-37073, Göttingen, Germany.
    • Neuroscience. 2000 Jan 1;96(2):359-71.

    AbstractMembrane potential of ventral respiratory group neurons as well as inspiratory-related cranial (hypoglossal) and spinal (C(1)-Th(4)) nerve activities were analysed in brainstem-spinal cord preparations from neonatal rats. Block of Cl(-)-mediated inhibition with bicuculline (plus strychnine) affected neither rhythmic depolarizations nor spike discharge in 23 of 30 ventral respiratory group cells. In the other seven neurons, block of inhibitory postsynaptic potentials evoked pronounced depolarizations and spike discharge that was synchronous with seizure-like spinal nerve activity. Respiratory hypoglossal nerve activity persisted after transection at the spinomedullary junction, whereas spinal rhythm was blocked. After transection, the moderate bicuculline-evoked seizure-like perturbation of hypoglossal nerve activity was abolished and rhythmic ventral respiratory group neuron activity was not disturbed, whereas epileptiform discharge persisted in spinal nerves. The seizure-like nerve activity and depolarization of the minor subpopulation of perturbed ventral respiratory group neurons were reversed by either adenosine or the A(1) adenosine receptor agonist 2-chloro-N(6)-cyclopentyladenosine. The A(2) receptor agonist CGS 21860 had no effect. In control preparations, inspiratory nerve activity and membrane potential fluctuations (29 of 35 cells) were not changed by adenosine, 2-chloro-N(6)-cyclopentyladenosine or CGS 21860. In the other six cells, adenosine evoked a hyperpolarization (<10 mV) with no major change in input resistance. The anticonvulsant effects of adenosine and 2-chloro-N(6)-cyclopentyladenosine were antagonized by the A(1) adenosine receptor blocker 8-cyclopentyl-1,3-dipropylxanthine. After pre-incubation with 8-cyclopentyl-1,3-dipropylxanthine, bicuculline also evoked seizure-like discharge in the hypoglossal nerve. The results indicate that seizure-like spinal motor output of the respiratory network upon block of Cl(-)-mediated inhibition is caused by disinhibition of spinal neuronal networks with afferent connections to the ventral respiratory group. Presynaptic A(1) adenosine receptors exert an anticonvulsant action on the disinhibited spinal motor network, but have no depressing effect per se on the isolated medullary respiratory network.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…