• Spine · Aug 2003

    In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.

    • Tang Kai, Guo Shao-qing, and Dang Geng-ting.
    • Department of Orthopaedics, Third Hospital of Peking University, Beijing, People's Republic of China. tangkailei@hotmail.com
    • Spine. 2003 Aug 1;28(15):1653-8.

    Study DesignAutogenous bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites were constructed in vitro under cell culture for 48 hours and implanted as a bone graft substitute for lumbar intervertebral spinal fusion in rabbits.ObjectivesTo evaluate the efficacy of autogenous bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as an alternative to autogenous graft materials in a lumbar interbody spinal fusion model.Summary Of Background DataBone marrow contains a population of rare progenitor cells capable of differentiating into bone, cartilage, muscle, tendon, and other connective tissues. These cells can be induced and differentiated into osteogenic osteoblasts with addition of osteogenic supplements. Combining bone marrow stromal-derived osteoblasts with porous ceramics gave rise to bone tissue in subcutaneous sites and repaired critical size segmental femoral defects. Little work has been done in the spine to assess fusion rates and associated biomechanical characteristics.MethodsFive experimental groups were evaluated: sham operation (Group I); porous calcium phosphate ceramics alone (Group II); autogenous tricortical iliac crest (Group III); bone marrow stromal-derived osteoblasts-calcium phosphate ceramic composites (Group IV); bone marrow stromal-derived osteoblasts-calcium phosphate ceramic composites with rhBMP-2 (Group V). All rabbits were killed 12 weeks after surgery, and the spinal fusion segments underwent the evaluation of gross inspection, manual palpation, radiography, computed tomography, nondestructive biomechanical testing, and histologic analysis.ResultsSuccessful spinal fusion was achieved by manual palpation in 100% (6/6) of animals in Group IV and Group V, 66.7% (4/6) in Group III, 50% (3/6) in Group II, and 0% (0/6) in Group I. Radiographic studies showed that minimal disc height loss was observed with ceramic blocks than with autograft. Biomechanical testingconfirmed that spines from Group IV and Group V were statistically significantly stiffer in flexion, extension, left and right bending, and left and right torsion than Group III and Group II. Histologic analysis demonstrated a qualitative increase of bone formation in fusion mass in Group IV and Group V versus all other groups. The size of fusion mass and the stiffness of fusion segments were greatest in Group V.ConclusionThe results indicate that bone marrow stromal-derived osteoblasts-calcium phosphate ceramic composites may provide an alternative to autogenous graft materials for lumbar interbody spinal fusion. Adding recombinant human bone morphogenetic protein-2 into the composites may reinforce the biomechanical stiffness for spinal fusion segments. Porous calcium phosphate ceramics alone were not suitable as a bone graft substitute for lumbar interbody spinal fusion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.