• Plos One · Jan 2015

    Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat.

    • Paul J Austin, Alison L Bembrick, Gareth S Denyer, and Kevin A Keay.
    • School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia.
    • Plos One. 2015 Jan 1;10(4):e0124755.

    AbstractAllodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four 'disability-specific' genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.