• Journal of sleep research · Dec 2005

    CAP and arousals are involved in the homeostatic and ultradian sleep processes.

    • Mario Giovanni Terzano, Liborio Parrino, Arianna Smerieri, Fabrizio Carli, Lino Nobili, Stefania Donadio, and Franco Ferrillo.
    • Department of Neuroscience, Sleep Disorders Center, University of Parma, Parma, Italy. mterzano@unipr.it
    • J Sleep Res. 2005 Dec 1;14(4):359-68.

    AbstractThere is growing evidence that cyclic alternating pattern (CAP) and arousals are woven into the basic mechanisms of sleep regulation. In the present study, the overnight sleep cycles (SC) of 20 normal subjects were analyzed according to their stage composition, CAP rate, phase A subtypes and arousals. Individual SC were then divided into 10 normalized temporal epochs. CAP parameters and arousals were measured in each epoch and averaged in relation to the SC order. Subtypes A2 and A3 of CAP in non-rapid eye movement (NREM) sleep, and arousals, both in REM and NREM sleep when not coincident with a A2 or A3 phases, were lumped together as fast electroencephalographic (EEG) activities (FA). Subtypes A1 of CAP, characterized by slow EEG activities (SA), were analyzed separately. The time distribution of SA and FA was compared to the mathematical model of normal sleep structure including functions representing the homeostatic process S, the circadian process C, the ultradian process generating NREM/REM cycles and the slow wave activity (SWA) resulting from the interaction between homeostatic and ultradian processes. The relationship between SA and FA and the sleep-model components was evaluated by multiple regression analysis in which SA and FA were considered as dependent variables while the covariates were the process S, process C, SWA, REM-on and REM-off activities and their squared values. Regression was highly significant (P < 0.0001) for both SA and FA. SA were prevalent in the first three SC, and exhibited single or multiple peaks immediately before and in the final part of deep sleep (stages 3 + 4). The peaks of FA were delayed and prevailed during the pre-REM periods of light sleep (stages 1 + 2) and during REM sleep. SA showed an exponential decline across the successive SC, according to the homeostatic process. In contrast, the distribution of FA was not influenced by the order of SC, with periodic peaks of FA occurring before the onset of REM sleep, in accordance with the REM-on switch. The dynamics of CAP and arousals during sleep can be viewed as an intermediate level between cellular activities and macroscale EEG phenomena as they reflect the decay of the homeostatic process and the interaction between REM-off and REM-on mechanisms while are slightly influenced by circadian rhythm.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.