• Anesthesia and analgesia · Apr 2016

    Comparative Study

    Fast Versus Slow Recruitment Maneuver at Different Degrees of Acute Lung Inflammation Induced by Experimental Sepsis.

    • Raquel S Santos, Lillian Moraes, Cynthia S Samary, Cíntia L Santos, Maíra B A Ramos, Ana P Vasconcellos, Lucas F Horta, Marcelo M Morales, Vera L Capelozzi, Cristiane S N B Garcia, John J Marini, Marcelo Gama de Abreu, Paolo Pelosi, Pedro L Silva, and Patricia R M Rocco.
    • From the *Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, †Laboratory of Experimental Surgery, Faculty of Medicine, and ‡Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; §Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil; ‖Rio de Janeiro Federal Institute of Education, Science and Technology, Rio de Janeiro, Brazil; ¶Department of Medicine, University of Minnesota, Minneapolis/Regions Hospital, Pulmonary and Critical Care Medicine, St Paul, Minnesota; #Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; and **IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
    • Anesth. Analg. 2016 Apr 1; 122 (4): 1089-100.

    BackgroundLarge tidal volume (VT) breaths or "recruitment maneuvers" (RMs) are used commonly to open collapsed lungs, but their effectiveness may depend on how the RM is delivered. We hypothesized that a stepped approach to RM delivery ("slow" RM) compared with a nonstepped ("fast" RM), when followed by decremental positive end-expiratory pressure (PEEP) titration to lowest dynamic elastance, would (1) yield a more homogeneous inflation of the lungs, thus reducing the PEEP obtained during post-RM titration; (2) produce less lung morphofunctional injury, regardless of the severity of sepsis-induced acute lung inflammation; and (3) result in less biological damage in severe, but not in moderate, acute lung inflammation.MethodsSepsis was induced by cecal ligation and puncture surgery in 51 Wistar rats. After 48 hours, animals were anesthetized, mechanically ventilated (VT = 6 mL/kg), and stratified by PO2/fraction of inspired oxygen ratio into moderate (≥300) and severe (<300) acute lung inflammation groups. Each group was then subdivided randomly into 3 subgroups: (1) nonrecruited; (2) RM with continuous positive airway pressure (30 cm H2O for 30 seconds; CPAPRM or fast RM); and (3) RM with stepwise airway pressure increase (5 cm H2O/step, 8.5 seconds/step, 6 steps, 51 seconds; STEPRM or slow RM), with a maximum pressure hold for 10 seconds. All animals underwent decremental PEEP titration to determine the level of PEEP required to optimize dynamic compliance after RM and were then ventilated for 60 minutes with VT = 6 mL/kg, respiratory rate = 80 bpm, fraction of inspired oxygen = 0.4, and the newly adjusted PEEP for each animal. Respiratory mechanics, hemodynamics, and arterial blood gases were measured before and at the end of 60-minute mechanical ventilation. Lung histology and biological markers of inflammation and damage inflicted to endothelial cells were evaluated at the end of the 60-minute mechanical ventilation.ResultsRespiratory system mean airway pressure was lower in STEPRM than that in CPAPRM. The total RM time was greater, and the RM rise angle was lower in STEPRM than that in CPAPRM. In both moderate and severe acute lung inflammation groups, STEPRM reduced total diffuse alveolar damage score compared with the score in nonrecruited rats. In moderate acute lung inflammation, STEPRM rats compared with CPAPRM rats had less endothelial cell damage and angiopoietin (Ang)-2 expression. In severe acute lung inflammation, STEPRM compared with CPAPRM reduced hyperinflation, endothelial cell damage, Ang-2, and intercellular adhesion molecule-1 expressions. RM rise angle correlated with Ang-2 expression.ConclusionsCompared with CPAPRM, STEPRM reduced biological markers associated with endothelial cell damage and ultrastructural endothelial cell injury in both moderate and severe sepsis-induced acute lung inflammation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.