• Thrombosis research · Mar 2012

    Review

    Sepsis, thrombosis and organ dysfunction.

    • Nicola Semeraro, Concetta T Ammollo, Fabrizio Semeraro, and Mario Colucci.
    • Department of Biomedical Sciences and Human Oncology, Section of General, Experimental and Clinical Pathology, University of Bari, Bari, Italy. semeraro@dimo.uniba.it
    • Thromb. Res. 2012 Mar 1;129(3):290-5.

    AbstractSepsis is often associated with haemostatic changes ranging from subclinical activation of blood coagulation (hypercoagulability), which may contribute to localized venous thromboembolism, to acute disseminated intravascular coagulation (DIC), characterized by widespread microvascular thrombosis and subsequent consumption of platelets and coagulation proteins, eventually causing bleeding manifestations. The key event underlying this life-threatening complication is the overwhelming inflammatory host response to the infectious agent leading to the overexpression of inflammatory mediators. The latter, along with the micro-organism and its derivatives are now believed to drive the major changes responsible for massive thrombin formation and fibrin deposition, namely 1) the aberrant expression of the TF by different cells (especially monocytes-macrophages), 2) the impairment of physiological anticoagulant pathways, orchestrated mainly by dysfunctional endothelial cells (ECs) and 3) the suppression of fibrinolysis due to overproduction of plasminogen activator inhibitor-1 (PAI-1) by ECs and likely also to thrombin-mediated activation of thrombin-activatable fibrinolysis inhibitor (TAFI). The ensuing microvascular thrombosis and ischemia are thought to contribute to tissue injury and multiple organ dysfunction syndrome (MODS). Recent evidence indicates that extracellular nuclear materials released from activated and especially apoptotic or necrotic cells, e.g. High Mobility Group Box-1 (HMGB-1) and histones, are endowed with cell toxicity, proinflammatory and clot-promoting properties and thus, during sepsis, they may represent late mediators that propagate further inflammation, coagulation, cell death and MODS. These insights into the pathogenesis of DIC and MODS may have implications for the development of new therapeutic agents potentially useful for the management of severe sepsis.Copyright © 2011 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.