• Anesthesiology · Jul 2014

    Fast-spiking Cell to Pyramidal Cell Connections Are the Most Sensitive to Propofol-induced Facilitation of GABAergic Currents in Rat Insular Cortex.

    • Yuko Koyanagi, Yoshiyuki Oi, Kiyofumi Yamamoto, Noriaki Koshikawa, and Masayuki Kobayashi.
    • From the Department of Anesthesiology (Y.K., Y.O.), and Department of Pharmacology (K.Y., N.K., M.K.), Nihon University School of Dentistry, Tokyo, Japan; Division of Immunology and Pathobiology (Y.K., Y.O.), and Division of Oral and Craniomaxillofacial Research (K.Y., N.K., M.K.), Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; and Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan (M.K.).
    • Anesthesiology. 2014 Jul 1;121(1):68-78.

    BackgroundPropofol facilitates γ-aminobutyric acid-mediated inhibitory synaptic transmission. In the cerebral cortex, γ-aminobutyric acidergic interneurons target both excitatory pyramidal cells (Pyr) and fast-spiking (FS) and non-FS interneurons. Therefore, the propofol-induced facilitation of inhibitory transmission results in a change in the balance of excitatory and inhibitory inputs to Pyr. However, it is still unknown how propofol modulates γ-aminobutyric acidergic synaptic transmission in each combination of Pyr and interneurons.MethodsThe authors examined whether propofol differentially regulates inhibitory postsynaptic currents (IPSCs) depending on the presynaptic and postsynaptic cell subtypes using multiple whole cell patch clamp recording from γ-aminobutyric acidergic interneurons and Pyr in rat insular cortex.ResultsPropofol (10 μM) consistently prolonged decay kinetics of unitary IPSCs (uIPSCs) in all types of inhibitory connections without changing paired-pulse ratio of the second to first uIPSC amplitude or failure rate. The FS→Pyr connections exhibited greater enhancement of uIPSC charge transfer (2.2 ± 0.5 pC, n = 36) compared with that of FS→FS/non-FS connections (0.9 ± 0.2 pC, n = 37), whereas the enhancement of charge transfer in non-FS→Pyr (0.3 ± 0.1 pC, n = 15) and non-FS→FS/non-FS connections (0.2 ± 0.1 pC, n = 36) was smaller to those in FS→Pyr/FS/non-FS. Electrical synapses between FS pairs were not affected by propofol.ConclusionsThe principal inhibitory connections (FS→Pyr) are the most sensitive to propofol-induced facilitation of uIPSCs, which is likely mediated by postsynaptic mechanisms. This preferential uIPSC enhancement in FS→Pyr connections may result in suppressed neural activities of projection neurons, which in turn reduces excitatory outputs from cortical local circuits.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.