-
Curr Opin Anaesthesiol · Feb 2006
ReviewOptimizing the intraoperative management of carbon dioxide concentration.
- Ozan Akça.
- Department of Anesthesiology and Perioperative Medicine, OUTCOMES RESEARCH Institute, University of Louisville, Kentucky 40202, USA. ozan.akca@louisville.edu
- Curr Opin Anaesthesiol. 2006 Feb 1;19(1):19-25.
Purpose Of ReviewThis review assesses whether there is a carbon dioxide concentration range that provides optimum benefit to the patient intraoperatively. It includes the physiological effects of carbon dioxide on various organ systems in awake and anesthetized individuals and its clinical effects in the ischemia/reperfusion setting. This review will present views on end-tidal or arterial carbon dioxide tension management in the perioperative period.Recent FindingsHypocapnia reduces intracranial pressure and is used by clinicians during acute traumatic brain injury, acute intracranial hemorrhage, and acutely growing brain tumors. There is mounting evidence, however, that hypercapnia improves tissue perfusion and oxygenation. Therefore, clinicians may want to induce mild-to-moderate hypercapnia during reperfusion states such as major vascular surgery, organ transplantation, tissue-graft surgery, and cases managed with low mean arterial pressures to control bleeding. As hypercapnia preserves cerebral blood flow even under relatively low perfusion pressures, it may be beneficial during global reperfusion scenarios. This hypothesis needs to be tested extensively before being considered for clinical applications. From a different perspective, current American Heart Association Guidelines recommend 12-15 breaths/min during cardiopulmonary resuscitation and stress the potential negative role of inadvertent hyperventilation on survival outcome. The importance of this concept is discussed briefly.SummaryOverall, the benefits of managing carbon dioxide concentration intraoperatively for the maintenance of cardiac output, tissue oxygenation, perfusion, intracranial pressure, and cerebrovascular reactivity are well defined.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.