• Chest · Jan 1994

    Urine hydrogen peroxide during adult respiratory distress syndrome in patients with and without sepsis.

    • M Mathru, M W Rooney, D J Dries, L J Hirsch, L Barnes, and M J Tobin.
    • Department of Anesthesiology, Loyola University Medical Center, Maywood Ill. 60153.
    • Chest. 1994 Jan 1;105(1):232-6.

    BackgroundThe lung injury in adult respiratory distress syndrome (ARDS) has been associated with increased expiratory hydrogen peroxide (H2O2) concentrations. Furthermore, patients with sepsis and ARDS are reported to have greater serum scavenging of H2O2 than patients with ARDS only. We hypothesized that the systemic presence of H2O2 would be detectable in the urine of these two groups of patients and that, in the case of ARDS sepsis, the relative contribution of each disease to the production this analyte would be discernible. Accordingly, we used an in vitro radioisotope assay to follow the weekly course of urine H2O2 levels in ARDS patients with and without sepsis, and in samples from control non-ARDS patients with sepsis with indwelling urinary catheters and in samples provided by healthy volunteers.MethodsThirty patients with ARDS were included in the study: 23 had sepsis and 7 were sepsis free. An indwelling catheter was used to collect urine from each patient over a 24-h period, first within 48 h of ICU admission and then every seventh day over the course of their illness. Urine H2O2 was measured by competitive decarboxylation of 1-14C-alpha-ketoglutaric acid by H2O2. Urine samples were provided by 20 healthy volunteers while, in 10 non-ARDS patients with sepsis, urine was collected over one 24-h period following a 5-day minimum with an indwelling urinary catheter.ResultsUrine H2O2 concentration in healthy control subjects (88 +/- 4 mumol/L) and non-ARDS patients with urinary catheters (96 +/- 5 mumol/L) was not significantly different. During the first 48 h in the ICU, urine H2O2 in patients with ARDS only (295 +/- 29 mumol/L) was significantly lower (p < 0.05) than patients with ARDS and sepsis (380 +/- 13 mumol/L); however, the lung injury scores of these two groups did not differ. Furthermore, within the first 48 h, the urine H2O2 of the patients with ARDS and sepsis who did not survive (427 +/- 19 mumol/L; n = 7) was significantly higher than that in patients who survived sepsis (352 +/- 14 mumol/L; n = 15). Thereafter, the lung injury scores and urine H2O2 levels of the nonsurvivor ARDS-sepsis group remained significantly higher compared with the other two groups. At lung injury scores of 3 and 2, regardless of days in ICU, the patients with ARDS only had significantly lower urine H2O2 (266 +/- 30 mumol/L and 167 +/- 24 mumol/L, respectively) compared with the survivor ARDS-sepsis group (376 +/- 19 mumol/L and 250 +/- mumol/L). When the patients with ARDS (both ARDS only and with sepsis) recovered, their urine H2O2 concentration did not differ from the control groups (healthy donors and patients without ARDS).ConclusionLung injury scores did not differentiate patients with ARDS and sepsis from patients with ARDS only during the first 10 days in the ICU; however, urine H2O2 levels were significantly greater in the patients with ARDS and sepsis. Moreover, despite no initial difference in lung injury, patients who did not survive ARDS and sepsis had consistently greater urine H2O2 concentration than patients who survived sepsis. The urine H2O2 level in the ARDS-only group was about 70 percent of the level in the survivor ARDS and sepsis group, suggesting that ARDS alone is the major contributor to the H2O2 oxidant processes during combined ARDS and sepsis. Furthermore, these studies demonstrate that urine H2O2 may be a useful analyte to differentiate the severity of oxidant processes in patients with ARDS and sepsis albeit the prognosis appears to be survival or nonsurvival.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…