-
- Marguerite K McDonald, Yuzhen Tian, Rehman A Qureshi, Michael Gormley, Adam Ertel, Ruby Gao, Aradillas LopezEnriqueE, Guillermo M Alexander, Ahmet Sacan, Paolo Fortina, and Seena K Ajit.
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA Department of Cancer Biology, Thomas Jefferson University, Cancer Genomics Laboratory, Kimmel Cancer Center, Philadelphia, PA, USA Janssen Research and Development LLC, Spring House, PA, USA Department of Molecular Medicine, Sapienza Universita di Roma, Rome, Italy.
- Pain. 2014 Aug 1; 155 (8): 1527-1539.
AbstractExosomes, secreted microvesicles transporting microRNAs (miRNAs), mRNAs, and proteins through bodily fluids, facilitate intercellular communication and elicit immune responses. Exosomal contents vary, depending on the source and the physiological conditions of cells, and can provide insights into how cells and systems cope with physiological perturbations. Previous analysis of circulating miRNAs in patients with complex regional pain syndrome (CRPS), a debilitating chronic pain disorder, revealed a subset of miRNAs in whole blood that are altered in the disease. To determine functional consequences of alterations in exosomal biomolecules in inflammation and pain, we investigated exosome-mediated information transfer in vitro, in a rodent model of inflammatory pain, and in exosomes from patients with CRPS. Mouse macrophage cells stimulated with lipopolysaccharides secrete exosomes containing elevated levels of cytokines and miRNAs that mediate inflammation. Transcriptome sequencing of exosomal RNA revealed global alterations in both innate and adaptive immune pathways. Exosomes from lipopolysaccharide-stimulated cells were sufficient to cause nuclear factor-κB activation in naive cells, indicating functionality in recipient cells. A single injection of exosomes attenuated thermal hyperalgesia in a murine model of inflammatory pain, suggesting an immunoprotective role for macrophage-derived exosomes. Macrophage-derived exosomes carry a protective signature that is altered when secreting cells are exposed to an inflammatory stimulus. We also show that circulating miRNAs altered in patients with complex regional pain syndrome are trafficked by exosomes. With their systemic signaling capabilities, exosomes can induce pleiotropic effects potentially mediating the multifactorial pathology underlying chronic pain, and should be explored for their therapeutic utility. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.