-
Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage.
- Xin Wei, Zhanyang Yu, Kin-Sang Cho, Huihui Chen, Muhammad Taimur A Malik, Xiaoming Chen, Eng H Lo, Xiaoying Wang, and Dong F Chen.
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA.
- Am. J. Pathol. 2011 Dec 1;179(6):2788-97.
AbstractNeuroglobin (NGB), a newly discovered member of the globin superfamily, may regulate neuronal survival under hypoxia or oxidative stress. Although NGB is greatly expressed in retinal neurons, the biological functions of NGB in retinal diseases remain largely unknown. We investigated the role of NGB in an experimental model of glaucoma, a neurodegenerative disorder that usually involves elevation of intraocular pressure (IOP). Elevated IOP is thought to induce oxidative stress in retinal ganglion cells (RGCs), thereby causing RGC death and, eventually, blindness. We found that NGB plays a critical role in increasing RGC resistance to ocular hypertension and glaucomatous damage. Elevation of IOP stimulated a transient up-regulation of endogenous NGB in RGCs. Constitutive overexpression of NGB in transgenic mice prevented RGC damage induced by glutamate cytotoxicity in vitro and/or by chronic IOP elevation in vivo. Moreover, overexpression of NGB attenuated ocular hypertension-induced superoxide production and the associated decrease in ATP levels in mice, suggesting that NGB acts as an endogenous neuroprotectant to reduce oxidative stress and improve mitochondrial function, thereby promoting RGC survival. Thus, NGB may modulate RGC susceptibility to glaucomatous neural damage. Manipulating the expression and bioactivity of NGB may represent a novel therapeutic strategy for glaucoma.Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.