• Am. Rev. Respir. Dis. · Feb 1990

    Comparative Study

    Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation.

    • N R MacIntyre and N E Leatherman.
    • Department of Medicine, Duke University Medical Center, Durham, NC 27710.
    • Am. Rev. Respir. Dis. 1990 Feb 1;141(2):327-31.

    AbstractPressure support ventilation (PSV) is a new form of mechanical ventilatory support that assists a patient's spontaneous ventilatory effort with a clinician-selected amount of inspiratory pressure. In order to assess the muscle unloading effect and the ventilatory pattern response to increasing levels of this inspiratory pressure assist, we first utilized a computer respiratory system model with variable alveolar ventilation demands and impedances. From this model, we calculated ventilatory muscle loads (expressed either as the work/min or as the pressure time index) during simulated, unassisted breathing and during simulated breathing with levels of inspiratory pressure assist up to that which resulted in a VT of 800 ml and no work being performed by the muscles (defined as PSVmax for the model conditions being studied). The optimal ventilatory pattern (i.e., frequency-tidal volume) under each ventilation and impedance condition was defined as that which resulted in minimal muscle load. Under these model conditions, we found that PSVmax ranged from 5 to 41 cm H2O and that as the level of inspiratory pressure assist was increased from zero to PSVmax, there was a biphasic response of both the ventilatory muscle loading and the ventilatory pattern. Specifically, at low levels of inspiratory pressure assist, the model predicted that the applied pressure would only partially unload the ventilatory muscles. Continued muscle energy expenditure would thus still be required, whereas the ventilatory pattern would change little. Conversely, at higher levels of inspiratory pressure assist, the model predicted that the applied pressure would be sufficient to completely unload the ventilatory muscles.(ABSTRACT TRUNCATED AT 250 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.