-
- Gabrielle G Leblanc, Eugene Golanov, Issam A Awad, William L Young, and Biology of Vascular Malformations of the Brain NINDS Workshop Collaborators.
- National Institute of Neurological Disorders and Stroke, Bethesda, Md., USA. QHRTS21@gmail.com
- Stroke. 2009 Dec 1; 40 (12): e694-702.
Background And PurposeThis review discusses recent research on the genetic, molecular, cellular, and developmental mechanisms underlying the etiology of vascular malformations of the brain (VMBs), including cerebral cavernous malformation, sporadic brain arteriovenous malformation, and the arteriovenous malformations of hereditary hemorrhagic telangiectasia. Summary of Review- The identification of gene mutations and genetic risk factors associated with cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, and sporadic arteriovenous malformation has enabled the development of animal models for these diseases and provided new insights into their etiology. All of the genes associated with VMBs to date have known or plausible roles in angiogenesis and vascular remodeling. Recent work suggests that the angiogenic process most severely disrupted by VMB gene mutation is that of vascular stabilization, the process whereby vascular endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to the vessel wall. In addition, there is now good evidence that in some cases, cerebral cavernous malformation lesion formation involves a genetic 2-hit mechanism in which a germline mutation in one copy of a cerebral cavernous malformation gene is followed by a somatic mutation in the other copy. There is also increasing evidence that environmental second hits can produce lesions when there is a mutation to a single allele of a VMB gene.ConclusionsRecent findings begin to explain how mutations in VMB genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors and have suggested candidate therapeutics. Understanding of the cellular mechanisms of VMB formation and progression in humans has lagged behind that in animal models. New knowledge of lesion biology will spur new translational work. Several well-established clinical and genetic database efforts are already in place, and further progress will be facilitated by collaborative expansion and standardization of these.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.