• Anesthesia and analgesia · Jul 2015

    Observational Study

    Monitoring Cerebral Autoregulation After Brain Injury: Multimodal Assessment of Cerebral Slow-Wave Oscillations Using Near-Infrared Spectroscopy.

    • David Highton, Arnab Ghosh, Ilias Tachtsidis, Jasmina Panovska-Griffiths, Clare E Elwell, and Martin Smith.
    • From the Department of Neurocritical Care, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, United Kingdom; and the Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.
    • Anesth. Analg. 2015 Jul 1; 121 (1): 198-205.

    BackgroundContinuous monitoring of cerebral autoregulation might provide novel treatment targets and identify therapeutic windows after acute brain injury. Slow oscillations of cerebral hemodynamics (0.05-0.003 Hz) are visible in multimodal neuromonitoring and may be analyzed to provide novel, surrogate measures of autoregulation. Near-infrared spectroscopy (NIRS) is an optical neuromonitoring technique, which shows promise for widespread clinical applicability because it is noninvasive and easily delivered across a wide range of clinical scenarios. The aim of this study is to identify the relationship between NIRS signal oscillations and multimodal neuromonitoring, examining the utility of near infrared derived indices of cerebrovascular reactivity.MethodsTwenty-seven sedated, ventilated, brain-injured patients were included in this observational study. Intracranial pressure, transcranial Doppler-derived flow velocity in the middle cerebral artery, and ipsilateral cerebral NIRS variables were continuously monitored. Signals were compared using wavelet measures of phase and coherence to examine the spectral features involved in reactivity index calculations. Established indices of autoregulatory reserve such as the pressure reactivity index (PRx) and mean velocity index (Mx) and the NIRS indices such as total hemoglobin reactivity index (THx) and tissue oxygen reactivity index (TOx) were compared using correlation and Bland-Altman analysis.ResultsNIRS indices correlated significantly between PRx and THx (rs = 0.63, P < 0.001), PRx and TOx (r = 0.40, P = 0.04), and Mx and TOx (r = 0.61, P = 0.004) but not between Mx and THx (rs = 0.26, P = 0.28) and demonstrated wide limits between these variables: PRx and THx (bias, -0.06; 95% limits, -0.44 to 0.32) and Mx and TOx (bias, +0.15; 95% limits, -0.34 to 0.64). Analysis of slow-wave activity throughout the intracranial pressure, transcranial Doppler, and NIRS recordings revealed statistically significant interrelationships, which varied dynamically and were nonsignificant at frequencies <0.008 Hz.ConclusionsAlthough slow-wave activity in intracranial pressure, transcranial Doppler, and NIRS is significantly similar, it varies dynamically in both time and frequency, and this manifests as incomplete agreement between reactivity indices. Analysis informed by a priori knowledge of physiology underpinning NIRS variables combined with sophisticated analysis techniques has the potential to deliver noninvasive surrogate measures of autoregulation, guiding therapy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.