-
Randomized Controlled Trial Comparative Study Clinical Trial
Alternative techniques of cardioplegia.
- T M Yau, R D Weisel, D A Mickle, M Komeda, J Ivanov, S Carson, M K Mohabeer, and L C Tumiati.
- Division of Cardiovascular Surgery, Toronto Hospital, Ontario, Canada.
- Circulation. 1992 Nov 1; 86 (5 Suppl): II377-84.
BackgroundAlthough normothermic cardioplegia has been used with acceptable clinical results, no studies have previously been performed to determine the metabolic consequences of these various techniques of myocardial protection. Therefore, we have performed a randomized clinical trial to assess the effects of three cardioplegic techniques on myocardial metabolic recovery.Methods And ResultsSeventy-four patients undergoing coronary artery bypass graft surgery were randomized to receive normothermic antegrade blood cardioplegia (n = 25), normothermic retrograde blood cardioplegia (n = 23), or intermittent cold antegrade blood cardioplegia (n = 26). Myocardial oxygen consumption and lactate production, adenine nucleotides, and adenine nucleotide degradation products were measured during the operation, and cardiac creatine kinase isoenzyme (CK-MB) release was assessed after surgery. Warm antegrade cardioplegia maximized myocardial oxygen consumption during cardioplegic delivery. Postoperative CK-MB release was less after warm antegrade cardioplegia, but the difference was not statistically significant. Warm retrograde cardioplegia resulted in the greatest degree of anaerobic lactate production but did not increase morbidity and mortality. Perioperative myocardial infarctions and postoperative low-output syndrome were most common after cold cardioplegia, but this trend was not statistically significant. During warm antegrade cardioplegia, adenosine triphosphate (ATP) was metabolized to diffusible precursors, which were washed out during cardioplegic infusion. Warm retrograde cardioplegia produced a breakdown of ATP to inosine and hypoxanthine, small molecules that accumulated during the cross-clamp period and were not washed out, perhaps because of inadequate perfusion with retrograde delivery. During cold cardioplegia, ATP was dephosphorylated, and adenosine diphosphate, adenosine monophosphate, and adenosine accumulated. These compounds were not regenerated to ATP but were not washed out of myocytes because they are large anionic molecules.ConclusionsIntermittent cold cardioplegia inhibited mitochondrial function but prevented the degradation of adenine nucleotides. Warm antegrade cardioplegia had the greatest myocardial oxygen consumption, and warm retrograde cardioplegia had the greatest anaerobic lactate production. There were no differences in clinical outcomes between cardioplegic groups.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.