• Spine · Mar 2009

    The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness.

    • Andy L Anderson, Terence E McIff, Marc A Asher, Douglas C Burton, and R Christopher Glattes.
    • Department of Orthopedic Surgery, Kansas University Medical Center, Kansas City, KS 66160, USA.
    • Spine. 2009 Mar 1; 34 (5): 441-6.

    Study DesignThis in vitro human cadaveric study tested the loss of thoracic motion segment flexion stiffness after sequential posterior upper instrumented vertebra anchor placement techniques and posterior column destabilization.ObjectiveThis study was designed to determine the possible destabilizing effects of upper thoracic instrumentation anchor site preparation.Summary Of Background DataProximal junctional kyphosis after instrumentation and arthrodesis for scoliosis and related spine deformities has recently been reported to range from 10% to 46%. The effect of posterior skeletal dissection associated with upper instrumented vertebra anchor placement on adjacent motion segment flexion stiffness has not been previously studied. METHODS.: Twenty-three intact thoracic motion segments were obtained from 6 human cadavers. Biomechanical testing was performed with each motion segment flexed to approximately 3.2 degrees at a rate of 0.1 Hz, with corresponding torques recorded. Data were collected after a series of 6 posterior procedures. Differences with P value <0.01 were considered significant and those with P value <0.05 marginally significant.ResultsSupratransverse process hook, supralaminar hook, pedicle screw placement, or pedicle screw removal done, bilaterally, produced similar, small (range, 2.09%-6.03%), nonsignificant reductions in motion segment flexion stiffness. But when totaled, these 4 procedures resulted in a significant 16.31% loss of flexion stiffness. The fifth procedure of supraspinous and interspinous process ligament transection added a marginally significant 6.59% incremental loss of flexion stiffness. Supralaminar hook site preparation combined with supraspinous and interspinous process ligament transection resulted in a marginally significant 12.62% incremental loss of flexion stiffness. Transection of the remaining posterior structures (facet joints and all other posterior soft tissue structures) produced a significant additional flexion stiffness loss of 44.72%. The anterior column alone provided only 32.39% of the total motion segment flexion stiffness. Transection of all posterior stabilizing structures, similar to a Smith-Peterson/chevron/Ponte resection, decreased motion segment flexion stiffness significantly, 67.61%.ConclusionPosterior thoracic skeletal structures involved in upper instrumented vertebra exposure andanchor placement were found to contribute to adjacent segment flexion stiffness. Although stiffness loss was small after individual procedures, the effects were additive for routinely used combinations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.