• Plos One · Jan 2012

    Reverse genetics screen in zebrafish identifies a role of miR-142a-3p in vascular development and integrity.

    • Mukesh Kumar Lalwani, Meenakshi Sharma, Angom Ramcharan Singh, Rajendra Kumar Chauhan, Ashok Patowary, Naresh Singh, Vinod Scaria, and Sridhar Sivasubbu.
    • Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.
    • Plos One. 2012 Jan 1; 7 (12): e52588.

    AbstractMicroRNAs are a well-studied class of non-coding RNA and are known to regulate developmental processes in eukaryotes. Their role in key biological processes such as vasculature development has attracted interest. However, a comprehensive understanding of molecular regulation of angiogenesis and vascular integrity during development remains less explored. Here we identified miRNAs involved in the development and maintenance of vasculature in zebrafish embryos using a reverse genetics approach. Using a combination of bioinformatics predictions and literature based evidences we mined over 701 Human and 329 Zebrafish miRNAs to derive a list of 29 miRNAs targeting vascular specific genes in zebrafish. We shortlisted eight miRNAs and investigated their potential role in regulating vascular development in zebrafish transgenic model. In this screen we identified three miRNAs, namely miR-1, miR-144 and miR-142a-3p that have the potential to influence vascular development in zebrafish. We show that miR-142a-3p mediates vascular integrity and developmental angiogenesis in vivo. Overexpression of miR-142a-3p results in loss of vascular integrity, hemorrhage and vascular remodeling during zebrafish embryonic development, while loss of function of miR-142a-3p causes abnormal vascular remodeling. MiR-142a-3p functions in part by directly repressing cdh5 (VE-cadherin). The vascular abnormalities that results from modulation of miR-142a-3p are reminiscent of cdh5 perturbation in zebrafish embryos. We also demonstrate that the action of miR-142a on cdh5 is potentially regulated by Lmo2, an important transcription factor, known for its role in vasculature development. The miR142a-3p mediated control of cdh5 constitutes an additional layer of regulation for maintaining vascular integrity and developmental angiogenesis. These findings have implications in development, wound repair and tumor growth.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.