-
Anesthesia and analgesia · Apr 2017
Novel Pump Control Technology Accelerates Drug Delivery Onset in a Model of Pediatric Drug Infusion.
- Michael J Parker, Mark A Lovich, Amy C Tsao, Hao Deng, Timothy Houle, and Robert A Peterfreund.
- From the *Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine Beth Israel Deaconess Medical Center, Boston, Massachusetts; †Department of Anesthesiology and Pain Medicine, Steward-St. Elizabeth's Medical Center, Boston, Massachusetts; and ‡Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
- Anesth. Analg. 2017 Apr 1; 124 (4): 1129-1134.
BackgroundLaboratory data suggest that newly initiated drug infusions reach steady-state delivery after a significant time lag. Depending on drug and carrier flow rates and the infusion system's common volume, lag times may exceed 20 or more minutes, especially in the neonatal/pediatric critical care environment. This study tested the hypothesis that a computer-executed algorithm controlling infusion pumps in a coordinated fashion predictably hastens the achievement of the intended steady-state drug delivery in a model of neonatal/pediatric drug infusion.MethodsWe constructed an in vitro model of neonatal/pediatric drug infusions through a pediatric 4-Fr central venous catheter at total system flows of 2 mL/h or 12 mL/h, representing a clinically relevant infusion range. Methylene blue served as the model infused drug for quantitative analysis. A novel algorithm, based on Taylor Dispersion Theory of fluid flow through tubes and executed by a computer, generated flow patterns that controlled and coordinated drug and carrier delivery by syringe pumps. We measured the time to achieve the intended steady-state drug delivery by conventional initiation of the drug infusion ("turning on the drug pump") and by algorithm-controlled infusion initiation.ResultsAt 2 mL/h total system flow, application of the algorithm reduced the time to achieve half of the intended drug delivery rate (T50) from 17 minutes [17, 18] to 3 minutes [3, 3] (median, interquartile range). At 12 mL/h total system flow, application of the algorithm reduced T50 from 6 minutes [6, 7] to 3 minutes [3, 3] The bootstrapped median difference is -14 (95% confidence interval [CI], -16 to -12, adjusted P=.00192) for 2 mL/h flow and -3 (95% CI, -4 to -3, adjusted P=.02061) for 12 mL/h flow. Compared with conventional initiation, the additional fluid required by the algorithm-directed infusion was 0.43 and 1.03 mL for the low- and high-infusion rates, respectively.ConclusionsThe output of infusion pumps can be predictably controlled and coordinated by a computer-executed algorithm in a model of neonatal/pediatric drug infusions. Application of an algorithm can reduce the time to achieve the intended rate of infused drug delivery with minimal incremental volume administration.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.