• Invest. Ophthalmol. Vis. Sci. · Jan 2017

    Functional Properties of Sensory Nerve Terminals of the Mouse Cornea.

    • Omar González-González, Federico Bech, Juana Gallar, Jesús Merayo-Lloves, and Carlos Belmonte.
    • Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain.
    • Invest. Ophthalmol. Vis. Sci. 2017 Jan 1; 58 (1): 404-415.

    PurposeTo define the firing properties of sensory nerve terminals innervating the adult mouse cornea in response to external stimuli of differing modality.MethodsExtracellular electrical activity of single corneal sensory nerve terminals was recorded in excised eyes of C57BL/6J mice. Eyes were placed in a recording chamber and were continuously superfused with warm saline solution. Nerve terminal impulse (NTI) activity was recorded by means of a glass pipette (tip ∼ 50 μm), applied on the corneal surface. Nerve terminal impulse discharges were stored in a computer for offline analysis.ResultsThree functionally distinct populations of nerve terminals were identified in the mouse cornea. Pure mechanonociceptor terminals (9.5%) responded phasically and only to mechanical stimuli. Polymodal nociceptor terminals (41.1%) were tonically activated by heat and hyperosmolal solutions (850 mOsm·kg-1), mechanical force, and/or TRPV1 and TRPA1 agonists (capsaicin and allyl isothiocyanate [AITC], respectively). Cold-sensitive terminals (49.4%) responded to cooling. Approximately two-thirds of them fired continuously at 34°C and responded vigorously to small temperature reductions, being classified as high-background activity, low-threshold (HB-LT) cold thermoreceptor terminals. The remaining one-third exhibited very low ongoing activity at 34°C and responded weakly to intense cooling, being named low-background activity, high-threshold (LB-HT) cold thermoreceptor terminals.ConclusionsThe mouse cornea is innervated by trigeminal ganglion (TG) neurons that respond to the same stimulus modalities as corneal receptors of other mammalian species. Mechano- and polymodal endings underlie detection of mechanical and chemical noxious stimuli while HB-LT and LB-HT cold thermoreceptors appear to be responsible for basal and irritation-evoked tearing and blinking, respectively.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.