• Proc. Natl. Acad. Sci. U.S.A. · Nov 2015

    CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice.

    • Julia Weber, Rupert Öllinger, Mathias Friedrich, Ursula Ehmer, Maxim Barenboim, Katja Steiger, Irina Heid, Sebastian Mueller, Roman Maresch, Thomas Engleitner, Nina Gross, Ulf Geumann, Beiyuan Fu, Angela Segler, Detian Yuan, Sebastian Lange, Alexander Strong, Jorge de la Rosa, Irene Esposito, Pentao Liu, Juan Cadiñanos, George S Vassiliou, Roland M Schmid, Günter Schneider, Kristian Unger, Fengtang Yang, Rickmer Braren, Mathias Heikenwälder, Ignacio Varela, Dieter Saur, Allan Bradley, and Roland Rad.
    • Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
    • Proc. Natl. Acad. Sci. U.S.A. 2015 Nov 10; 112 (45): 13982-7.

    AbstractHere, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…