-
- N Bruns and C Krettek.
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland. bruns.nico@mh-hannover.de.
- Unfallchirurg. 2019 Apr 1; 122 (4): 270-277.
AbstractPossible use of 3D-printing technology in orthopedic surgery ranges from preoperative planning to dedicated counselling with patients by the use of individual 3D models, intraoperative surgery tools or implants and various other applications. This article describes a technique for the creation of intraoperative tools with which the process from computed tomography (CT) images to 3D-printed tools in trauma surgery can safely be administered. For segmentation of CT images a range of different software options is available. The standard triangulation file created in this way (file ending: .stl) must subsequently be post-processed. By the use of the digital casts from bone and fractures in computer-aided design (CAD) programs implants and patient individual tools are created, which can range from ortheses to protheses to intraoperative saw guides.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.