• Exp Brain Res · Jan 1988

    Stabilizing gaze reflexes in the pigeon (Columba livia). II. Vestibulo-ocular (VOR) and vestibulo-collic (closed-loop VCR) reflexes.

    • H Gioanni.
    • Département de Neurochimie-Anatomie, Université Pierre et Marie Curie, Paris, France.
    • Exp Brain Res. 1988 Jan 1; 69 (3): 583-93.

    AbstractThe vestibulo-ocular reflex (VOR) and the closed-loop vestibulo-collic reflex (CL-VCR) were investigated in the pigeon. The animals, placed either in the fixed-head condition (VOR) or in the free-head condition (CL-VCR) were rotated in darkness (vestibular responses) or in the presence of visual surroundings (visuo-vestibular responses). The linear range of the reflexes were determined both in the frequency and in the velocity domains. Results show that: 1. Pigeons develop a strong VOR, which presents the same asymmetry observed with the OKN, the gain being higher when the slow-phase occurs in the T-N direction. This asymmetry persists in the light (VOR + OKN). In the free-head condition, both the eye and the head display a synchronized nystagmus whose effects are additive. The head reflex (CL-VCR) contributes about 80% of the gaze stabilization. 2. In the medium-low frequency range, the head response (CL-VCR) has a lower gain than the VOR (head-fixed), but the gain of both reflexes increases with frequency, up to about 1 at 0.6-1 Hz. The gaze response (eye + head) presents an optimal gain above 0.06 Hz. The phase lead is higher for the VOR than for the CL-VCR (40 degrees and 32 degrees respectively at 0.03 Hz), but both phases also become nul around 1 Hz. The time constants are 6.5 s for the VOR, 8.5 s for the CL-VCR and 9.6 s for the gaze response (VOR + CL-VCR). 3. While the VOR gain shows a saturation at peak stimulation velocities (PV) higher than 20 degrees/s (at 0.3 Hz), the CL-VCR gain is linear at least up to 60 degrees/s (the highest PV used). However, the phase lead declines when the PV is greater than 20 degrees/s, both for the VOR and the CL-VCR. 4. When the vestibular stimulation is delivered in the light (visuo-vestibular stimulation), there is no phase shift. The VOR gain (fixed-head) is optimal and linear over the entire frequency range, but it saturates for PV higher than 40 degrees/s. In the free-head condition, while the gaze gain is linear and close to 1 in both the frequency and the velocity domains, the head response gain (CL-VCR) remains lower especially in the low frequency and in the low velocity ranges.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.