• Biomed. Pharmacother. · May 2018

    Zhen-wu-tang protects against podocyte injury in rats with IgA nephropathy via PPARγ/NF-κB pathway.

    • Bihao Liu, Yu He, Ruirui Lu, Jie Zhou, Lixia Bai, Peichun Zhang, Shufang Ye, Junbiao Wu, Chungling Liang, Yuan Zhou, and Jiuyao Zhou.
    • Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East WaiHuan Road, Guangzhou, Guangdong, 510006 China.
    • Biomed. Pharmacother. 2018 May 1; 101: 635-647.

    AbstractZhen-wu-tang (ZWT) has been widely applied in chronic kidney diseases. However, the mechanism of ZWT remains unclear. Peroxisome proliferator-activated receptors-γ (PPARγ) is known as a protective factor for podocyte and kidney function. This study is aimed to investigate the protective effects of ZWT on IgA nephropathy (IgAN) in rats against podocyte injury and the underlying mechanism related to PPARγ. IgAN model rats were induced by administering bovine serum albumin, lipopolysaccharide, and carbon tetrachloride. ZWT at two doses and GW9662 (PPARγ antagonist) was administered once daily for 4 weeks respectively. Cultured podocyte induced by LPS were used to evaluate the podocyte-protective effect and related mechanism of ZWT in vitro. Results showed that ZWT observably reduced proteinuria and hematuria excretion, as well as the levels of blood urea nitrogen, serum creatinine, serum uric acid, low-density lipoprotein cholesterol, total cholesterol and triglycerides, but increased the contents of high-density lipoprotein cholesterol, ameliorating renal function and hyperlipidemia state in IgAN rats. Besides, both ZWT administration groups alleviated kidney pathological lesion, macrophage infiltration, IgA and C3 deposition in glomeruli. To further demonstrate the protective effects of ZWT, we found that podocyte damage was markedly ameliorated with ZWT treatments in IgAN rats and LPS-induced podocyte injury model by suppressing the expressions of desmin, reducing podocyte apoptosis and augmenting nephrin and podocin levels. Moreover, ZWT inhibited the phosphorylation of NF-κB and IκBα, simultaneously upregulated PPARγ. However, GW9662 made no difference in all the above effects compared to the model group, and was reversed by ZWT in vitro study. In conclusion, these results demonstrated that ZWT ameliorated IgAN-induced podocyte injury via upregulation PPARγ and the underlying mechanism might involve the inhibition of NF-κB pathway.Copyright © 2018 Elsevier Masson SAS. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.