• J. Appl. Physiol. · Aug 2018

    Clinical Trial

    Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD.

    • Daniel Langer, Casey Ciavaglia, Azmy Faisal, Katherine A Webb, J Alberto Neder, Rik Gosselink, Sauwaluk Dacha, Marko Topalovic, Anna Ivanova, and Denis E O'Donnell.
    • Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada.
    • J. Appl. Physiol. 2018 Aug 1; 125 (2): 381-392.

    AbstractAmong patients with chronic obstructive pulmonary disease (COPD), those with the lowest maximal inspiratory pressures experience greater breathing discomfort (dyspnea) during exercise. In such individuals, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. Therefore, we aimed to identify physiological mechanisms of improvement in dyspnea and exercise endurance following inspiratory muscle training (IMT) in patients with COPD and low maximal inspiratory pressure (Pimax). The effects of 8 wk of controlled IMT on respiratory muscle function, dyspnea, respiratory mechanics, and diaphragm electromyography (EMGdi) during constant work rate cycle exercise were evaluated in patients with activity-related dyspnea (baseline dyspnea index <9). Subjects were randomized to either IMT or a sham training control group ( n = 10 each). Twenty subjects (FEV1 = 47 ± 19% predicted; Pimax  = -59 ± 14 cmH2O; cycle ergometer peak work rate = 47 ± 21% predicted) completed the study; groups had comparable baseline lung function, respiratory muscle strength, activity-related dyspnea, and exercise capacity. IMT, compared with control, was associated with greater increases in inspiratory muscle strength and endurance, with attendant improvements in exertional dyspnea and exercise endurance time (all P < 0.05). After IMT, EMGdi expressed relative to its maximum (EMGdi/EMGdimax) decreased ( P < 0.05) with no significant change in ventilation, tidal inspiratory pressures, breathing pattern, or operating lung volumes during exercise. In conclusion, IMT improved inspiratory muscle strength and endurance in mechanically compromised patients with COPD and low Pimax. The attendant reduction in EMGdi/EMGdimax helped explain the decrease in perceived respiratory discomfort despite sustained high ventilation and intrinsic mechanical loading over a longer exercise duration. NEW & NOTEWORTHY In patients with COPD and low maximal inspiratory pressures, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. This study showed that 8 wk of home-based, partially supervised IMT improved respiratory muscle strength and endurance, dyspnea, and exercise endurance. Dyspnea relief occurred in conjunction with a reduced activation of the diaphragm relative to maximum in the absence of significant changes in ventilation, breathing pattern, and operating lung volumes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.