• Exp Brain Res · Jan 1985

    Nociceptive neurones in the superficial dorsal horn of cat lumbar spinal cord and their primary afferent inputs.

    • W M Steedman, V Molony, and A Iggo.
    • Exp Brain Res. 1985 Jan 1; 58 (1): 171-82.

    AbstractThe morphology, background activity and responses to stimulation of primary afferent inputs of small neurones in the superficial dorsal horn which could only be excited from the skin by noxious stimulation were investigated by intracellular recording and ionophoresis of HRP. Neurons which gave similar responses to afferent stimulation were morphologically heterogeneous with respect to dendritic tree geometry and axonal projection, but were located around the lamina I/II border. Cutaneous excitatory receptive fields responding to noxious stimulation were generally small; most neurones had more extensive inhibitory fields responding to innocuous mechanical stimulation, in many cases overlapping the excitatory fields. Generally, stimulation of the excitatory field resulted in depolarization of the neurone and increased action potential firing, and stimulation of the inhibitory field resulted in hyperpolarization. Electrical stimulation of peripheral nerves revealed the existence of converging excitatory inputs carried by different fibre groups, and all neurones received an inhibitory input activated at low threshold. Excitatory responses were short-lived and occurred consistently in response to repeated stimulation. Central delay measurements gave evidence of a number of A delta monosynaptic inputs but only one A beta monosynaptic input; inhibitory inputs along A beta fibres were polysynaptic. The constant latency and regularity of the C response suggested monosynaptic connections. Low intensity stimulation of inhibitory inputs elicited a short-lived i.p.s.p. which increased in amplitude with increasing stimulus strength until it disappeared into a more prolonged hyperpolarization. This was associated with inhibition of background action potentials, and increased in duration with increasing stimulus strength up to C levels, indicating an A delta and C component. It is suggested that the level of excitability of these neurones depends on the relative amounts of concurrent noxious and innocuous stimulation, and that the resultant output, which is conveyed mainly to other neurones within the spinal cord, could modulate reflex action at the spinal level as well as affecting components of ascending sensory pathways.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…