• BMC anesthesiology · Aug 2019

    Photoacoustic gas monitoring for anesthetic gas pollution measurements and its cross-sensitivity to alcoholic disinfectants.

    • Jennifer Herzog-Niescery, Thomas Steffens, Martin Bellgardt, Andreas Breuer-Kaiser, Philipp Gude, Heike Vogelsang, Thomas Peter Weber, and Hans-Martin Seipp.
    • Department of Anesthesiology, Katholisches Klinikum Bochum, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany. j.herzog-niescery@klinikum-bochum.de.
    • BMC Anesthesiol. 2019 Aug 9; 19 (1): 148.

    BackgroundReal-time photoacoustic gas monitoring is used for personnel exposure and environmental monitoring, but its accuracy varies when organic solvents such as alcohol contaminate measurements. This is problematic for anesthetic gas measurements in hospitals, because most disinfectants contain alcohol, which could lead to false-high gas concentrations. We investigated the cross-sensitivities of the photoacoustic gas monitor Innova 1412 (AirTech Instruments, LumaSense, Denmark) against alcohols and alcoholic disinfectants while measuring sevoflurane, desflurane and isoflurane in a laboratory and in hospital during surgery.Methods25 mL ethyl alcohol was distributed on a hotplate. An optical filter for isoflurane was used and the gas monitor measured the 'isoflurane' concentration for five minutes with the measuring probe fixed 30 cm above the hotplate. Then, 5 mL isoflurane was added vaporized via an Anesthetic Conserving Device (Sedana Medical, Uppsala, Sweden). After one-hour measurement, 25 mL isopropyl alcohol, N-propanol, and two alcoholic disinfectants were subsequently added, each in combination with 5 mL isoflurane. The same experiment was in turn performed for sevoflurane and desflurane. The practical impact of the cross-sensitivity was investigated on abdominal surgeons who were exposed intraoperatively to sevoflurane. A new approach to overcome the gas monitor's cross-sensitivity is presented.ResultsCross-sensitivity was observed for all alcohols and its strength characteristic for the tested agent. Simultaneous uses of anesthetic gases and alcohols increased the concentrations and the recovery times significantly, especially while sevoflurane was utilized. Intraoperative measurements revealed mean and maximum sevoflurane concentrations of 0.61 ± 0.26 ppm and 15.27 ± 14.62 ppm. We replaced the cross-sensitivity peaks with the 10th percentile baseline of the anesthetic gas concentration. This reduced mean and maximum concentrations significantly by 37% (p < 0.001) and 86% (p < 0.001), respectively.ConclusionPhotoacoustic gas monitoring is useful to detect lowest anesthetic gases concentrations, but cross-sensitivity caused one third falsely high measured mean gas concentration. One possibility to eliminate these peaks is the recovery time-based baseline approach. Caution should be taken while measuring sevoflurane, since marked cross-sensitivity peaks are to be expected.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.