• Pediatric emergency care · Dec 2021

    Observational Study

    Assessing the Impact of 3% Hypertonic Saline Hyperosmolar Therapy on Intubated Children With Isolated Traumatic Brain Injury by Cerebral Oximetry in a Pediatric Emergency Setting.

    • Leigh-Ann Washer, Thomas Abramo, Hailey Hardgrave, Zena Leah Harris, Mark Meredith, Katherine Moore, Abudulah Dalabih, David Williams, Amy Jorgenson-Stough, and Lee Crawley.
    • From the Department of Pediatrics, University of Arkansas for Medical Sciences.
    • Pediatr Emerg Care. 2021 Dec 1; 37 (12): e791e804e791-e804.

    BackgroundIntubated pediatric patients with isolated traumatic brain injury (TBI) are a diagnostic challenge for early detection of altered cerebral physiology instigated by trauma-induced increased intracranial pressure (ICP) while preventing secondary neuronal damage (secondary insult detection) and assessing the effects of increased ICP therapeutic interventions (3% hypertonic saline [HTS]). Invasive brain tissue oxygen monitoring is guiding new intensive care unit TBI management but is not pediatric emergency department (PED) readily accessible. Objective measurements on pediatric isolated TBI-altered bihemispheric cerebral physiology and treatment effects of 3% HTS are currently lacking. Cerebral oximetry can assess increased ICP-induced abnormal bihemispheric cerebral physiology by measuring regional tissue oxygenation (rcSO2) and cerebral blood volume index (CBVI) and the mechanical cerebrospinal fluid removal effects on the increased ICP-induced abnormal bihemispheric cerebral physiology.In the PED intubated patients with isolated TBI, assessing the 3% HTS therapeutic response is solely by vital signs and limited clinical assessment skills. Objective measurements of the 3% HTS hyperosmolar effects on the PED isolated TBI patients' altered bihemispheric cerebral physiology are lacking. We believe that bihemispheric rcSO2 and CBVI could elucidate similar data on 3% HTS impact and influence in the intubated isolated TBI patients.ObjectiveThis study aimed to analyze the effects of 3% HTS on bihemispheric rcSO2 and CBVI in intubated patients with isolated TBI.MethodsAn observational, retrospective analysis of bihemispheric rcSO2 and CBVI readings in intubated pediatric patients with isolated TBI receiving 3% HTS infusions, was performed.ResultsFrom 2010 to 2017, 207 intubated patients with isolated TBI received 3% HTS infusions (median age, 2.9 [1.1-6.9 years]; preintubation Glasgow Coma Scale score, 7 [6-8]). The results were as follows: initial pre-3% HTS, 43% (39.5% to 47.5%; left) and 38% (35% to 42%; right) for rcSO2 < 60%, and 8 (-28 to 21; left) and -15 (-34 to 22; right) for CBVI; post-3% HTS, 68.5% (59.3% to 76%, P < 0.0001; left) and 62.5% (56.0% to 74.8%, P < 0.0001; right) for rcSO2 < 60%, and 12 (-7 to 24, P = 0.04; left) and 14 (-21 to 22, P < 0.0001; right) for CBVI; initial pre-3% HTS, 90% (83% to 91%; left) and 87% (82% to 92%; right) for rcSO2 > 80%, and 16.5 (6 to 33, P < 0.0001; left) and 16.8 (-2.5 to 27.5, P = 0.005; right) for CBVI; and post-3% HTS, 69% (62% to 72.5%, P < 0.0001; left) and 63% (59% to 72%, P < 0.0001; right) for rcSO2 > 80%, and 16.5 (6 to 33, P < 0.0001; left) and 16.8 (-2.5 to 27.5, P = 0.005; right) for CBVI. The following results for cerebral pathology pre-3% HTS were as follows: epidural: 85% (58% to 88.5%) for left rcSO2 and -9.25 (-34 to 19) for left CBVI, and 85.5% (57.5% to 89%) for right rcSO2 and -12.5 (-21 to 27) for CBVI; subdural: 45% (38% to 54%) for left rcSO2 and -9.5 (-25 to 19) for left CBVI, and 40% (33% to 49%) for right rcSO2 and -15 (-30.5 to 5) for CBVI. The following results for cerebral pathology post-3% HTS were as follows: epidural: 66% (58% to 69%, P = 0.03) for left rcSO2 and 15 (-1 to 21, P = 0.0004) for left CBVI, and 63% (52% to 72%, P = 0.009) for right rcSO2, and 15.5 (-22 to 24, P = 0.02) for CBVI; subdural: 63% (56% to 72%, P < 0.0001) for left rcSO2 and 9 (-20 to 22, P < 0.0001) for left CBVI, and 62.5% (48% to 73%, P < 0.0001) for right rcSO2, and 3 (-26 to 22, P < 0.0001) for CBVI. Overall, heart rate showed no significant change. Three percent HTS effect on interhemispheric rcSO2 difference >10 showed rcSO2 < 60%, and subdural hematomas had the greatest reduction (P < 0.001). The greatest positive changes occurred in bihemispheric or one-hemispheric rcSO2 < 60% with an interhemispheric discordance rcSO2 > 10 and required the greatest number of 3% HTS infusions. For 3% HTS 15% rcSO2 change time effect, all patients achieved positive change with subdural hematomas and hemispheric rcSO2 readings <60% with the shortest achievement time of 1.2 minutes (0.59-1.75; P < 0.001).ConclusionsIn intubated pediatric patients with isolated TBI who received 3% HTS infusions, bihemispheric rcSO2 and CBVI readings immediately detected and trended the 3% HTS effects on the trauma-induced cerebral pathophysiology. The 3% HTS infusion produced a significant improvement in rcSO2 and CBVI readings and a reduction in interhemispheric rcSO2 discordance differences. In patients with bihemispheric or one-hemispheric rcSO2 readings <60% with or without an interhemispheric discordance, rcSO2 > 10 demonstrated the greatest significant positive delta change and required the greatest numbers of 3% HTS infusions. Overall, 3% HTS produced a significant positive 15% change within 2.1 minutes of infusion, whereas heart rate showed no significant change. During trauma neuroresuscitation, especially in intubated isolated TBI patients requiring 3% HTS, cerebral oximetry has shown its functionality as a rapid adjunct neurological, therapeutic assessment tool and should be considered in the initial emergency department pediatric trauma neurological assessment and neuroresuscitation regimen.Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…