• J Am Coll Nutr · Apr 2009

    Review

    Skeletal and hormonal effects of magnesium deficiency.

    • Robert K Rude, Frederick R Singer, and Helen E Gruber.
    • USC Keck School of Medicine, Los Angeles, CA, USA. rrude60075@aol.com
    • J Am Coll Nutr. 2009 Apr 1; 28 (2): 131-41.

    AbstractMagnesium (Mg) is the second most abundant intracellular cation where it plays an important role in enzyme function and trans-membrane ion transport. Mg deficiency has been associated with a number of clinical disorders including osteoporosis. Osteoporosis is common problem accounting for 2 million fractures per year in the United States at a cost of over $17 billion dollars. The average dietary Mg intake in women is 68% of the RDA, indicating that a large proportion of our population has substantial dietary Mg deficits. The objective of this paper is to review the evidence for Mg deficiency-induced osteoporosis and potential reasons why this occurs, including a cumulative review of work in our laboratories and well as a review of other published studies linking Mg deficiency to osteoporosis. Epidemiological studies have linked dietary Mg deficiency to osteoporosis. As diets deficient in Mg are also deficient in other nutrients that may affect bone, studies have been carried out with select dietary Mg depletion in animal models. Severe Mg deficiency in the rat (Mg at <0.0002% of total diet; normal = 0.05%) causes impaired bone growth, osteopenia and skeletal fragility. This degree of Mg deficiency probably does not commonly exist in the human population. We have therefore induced dietary Mg deprivation in the rat at 10%, 25% and 50% of recommended nutrient requirement. We observed bone loss, decrease in osteoblasts, and an increase in osteoclasts by histomorphometry. Such reduced Mg intake levels are present in our population. We also investigated potential mechanisms for bone loss in Mg deficiency. Studies in humans and and our rat model demonstrated low serum parathyroid hormone (PTH) and 1,25(OH)(2)-vitamin D levels, which may contribute to reduced bone formation. It is known that cytokines can increase osteoclastic bone resorption. Mg deficiency in the rat and/or mouse results in increased skeletal substance P, which in turn stimulates production of cytokines. With the use of immunohistocytochemistry, we found that Mg deficiency resulted in an increase in substance P, TNFalpha and IL1beta. Additional studies assessing the relative presence of receptor activator of nuclear factor kB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), found a decrease in OPG and an increase in RANKL favoring an increase in bone resorption. These data support the notion at dietary Mg intake at levels not uncommon in humans may perturb bone and mineral metabolism and be a risk factor for osteoporosis.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.