Respiratory physiology & neurobiology
-
Respir Physiol Neurobiol · Feb 2006
Comparative StudyNocturnal non-invasive positive pressure ventilation: physiological effects on spontaneous breathing.
The dynamic process of how non-invasive positive pressure ventilation (NPPV) improves spontaneous ventilation is unclear. Therefore, daytime trends of blood gases and breathing pattern were assessed by measurements 0, 0.5, 1, 3, 7, 11 and 15 h after cessation of nocturnal controlled NPPV in patients with chronic hypercapnic respiratory failure. Twelve patients (six COPD/six restrictive) who were established on NPPV and 12 controls (six COPD/six restrictive) completed. ⋯ Lung function parameters and inspiratory impedance remained unchanged. Improvements in health-related quality of life were evident and were correlated to the decline of elevated bicarbonate levels (r = 0.72, P < 0.01). In conclusion, there is a stepwise adaptation process lasting 3h when switching from nocturnal controlled NPPV to daytime spontaneous breathing in which tidal volume increases and PaCO2 drops after an initial PaCO2 decrease while on NPPV.
-
Respir Physiol Neurobiol · Feb 2006
Comparative Study Clinical TrialThe ventilatory response to carbon dioxide and sustained hypoxia is enhanced after episodic hypoxia in OSA patients.
Our primary hypothesis was that the acute ventilatory response to carbon dioxide in the presence of sustained hypoxia {VRCO2 (hypoxia)} or hyperoxia {VRCO2 (hyperoxia)} would increase in subjects with obstructive sleep apnea (OSA) after exposure to episodic hypoxia. Secondarily, we hypothesized that chronic (i.e. years) exposure to episodic hypoxia, a hallmark of OSA, would facilitate persistent augmentation of respiratory activity (i.e. long-term facilitation) after acute (i.e. minutes) exposure to episodic hypoxia. Nine healthy males with OSA that were healthy otherwise completed a series of rebreathing trials before and after exposure to eight 4 min episodes of hypoxia. ⋯ However, only the increase in the VRCO2 (hypoxia) after episodic hypoxia was greater than the increase measured after exposure to sham episodic hypoxia. Long-term facilitation of ventilation, tidal volume and breathing frequency was not evident after episodic hypoxia. We conclude that the VRCO2 (hypoxia) is enhanced after exposure to acute episodic hypoxia and that enhancement of the VRCO2 (hypoxia) occurs even though long-term facilitation is not evident.
-
Respir Physiol Neurobiol · Jan 2006
Comparative StudyCardiopulmonary exercise testing in obstructive sleep apnea syndrome.
To investigate whether cardiac dysfunction or abnormal measurements on cardiopulmonary exercise testing (CPET) are present in patients with obstructive sleep apnea syndrome (OSAS) and what factors are responsible for exercise limitation in these patients. We enrolled 20 patients with moderate or severe OSAS in the OSA group and 20 subjects without OSAS in the control group. All subjects underwent a sleep study and cardiac evaluation by radionuclide scanning and CPET. ⋯ The OSA group had a higher breathing reserve and a greater decrease in anaerobic threshold (AT) and oxygen pulse. In conclusion, patients with moderate to severe OSAS had abnormal CPET results. These abnormalities may be due to cardiac disease, pulmonary vascular disease, or possible lack of fitness.
-
Respir Physiol Neurobiol · Jan 2006
Comparative StudyMechanical loads modulate tidal volume and lung washout during high-frequency percussive ventilation.
High-frequency percussive ventilation (HFPV) has been proved useful in patients with acute respiratory distress syndrome. However, its physiological mechanisms are still poorly understood. The aim of this work is to evaluate the effects of mechanical loading on the tidal volume and lung washout during HFPV. ⋯ Indeed, an inverse linear relationship was found between these two ratios. Peak and mean pressure in the model decreased linearly with increasing pulsatile volume, the latter to a lesser extent. In conclusion, elastic or resistive loading modulates the mechanical characteristics of the HFPV device but in such a way that washout volume and time allowed for diffusive ventilation vary agonistically.
-
Respir Physiol Neurobiol · Aug 2005
Comparative StudyThe spatial and temporal heterogeneity of regional ventilation: comparison of measurements by two high-resolution methods.
High-resolution estimates of ventilation distribution in normal animals utilizing deposition of fluorescent microsphere aerosol (FMS technique) demonstrate substantial ventilation heterogeneity, but this finding has not been confirmed by an independent method. Five supine anesthetized sheep were used to compare the spatial and temporal heterogeneity of regional ventilation measured by both the FMS technique and by a ventilation model utilizing the data from computed tomography images of xenon gas washin (CT/Xe technique). An aerosol containing 1 microm fluorescent microspheres (FMS) was administered via a mechanical ventilator delivering a 2-s end-inspiration hold during each breath. ⋯ Both techniques showed comparable large-scale distribution of regional ventilation in the caudal lobes of the supine animals. There were appreciable differences in the temporal variability of ventilation among animals. This study provides an independent confirmation of the scale-dependent heterogeneity of ventilation described by previous FMS aerosol studies of ventilation heterogeneity.