Respiratory physiology & neurobiology
-
Respir Physiol Neurobiol · Sep 2018
Randomized Controlled Trial Multicenter Study Comparative Study Observational StudyPressure support ventilation vs Continuous positive airway pressure for treating of acute cardiogenic pulmonary edema: A pilot study.
Non-invasive ventilation is usually adopted as a support to medical therapy in patients with acute pulmonary edema, but which modality between Pressure Support Ventilation (PSV) and Continuous Positive Airway Pressure (CPAP) has better favourable effects is not been yet well known. Aim of this observational study was to provide data on these different non-invasive ventilation modalities in the management of acute cardiogenic pulmonary edema. ⋯ Furthermore, there were no significant differences regarding mortality in the two groups, but patients treated with PSV had a significant lower rate of endotracheal intubation and a higher improvement of blood gas analyses parameters. In conclusion, our data support only a slight advantage in favour to PSV versus CPAP.
-
Respir Physiol Neurobiol · Aug 2018
Modelling nasal high flow therapy effects on upper airway resistance and resistive work of breathing.
The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30-60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (Vt) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. ⋯ NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of breathing, RR and minute volume.
-
Respir Physiol Neurobiol · Jun 2018
Randomized Controlled TrialAcute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD.
This randomized, double-blind, crossover study aimed to determine if acute treatment with inhaled bronchodilators, by improving regional lung hyperinflation and ventilation distribution, would reduce dead space-to-tidal volume ratio (VD/VT); thus contributing to improved exertional dyspnea in COPD. Twenty COPD patients (FEV1 = 50 ± 15% predicted; mean ± SD) performed pulmonary function tests and symptom-limited constant-work rate exercise at 75% peak-work rate (with arterialized capillary blood gases) after nebulized bronchodilator (BD; ipratropium 0.5mg + salbutamol 2.5 mg) or placebo (PL; normal saline). After BD versus PL: Functional residual capacity decreased by 0.4L (p = .0001). ⋯ There was no significant difference in arterial CO2 tension or VD/VT, but alveolar ventilation increased by 3.8 ± 5.5 L/min (p = .02). Post-BD improvements in respiratory mechanics explained 51% of dyspnea reduction at a standardized exercise time. Bronchodilator-induced improvements in respiratory mechanics were not associated with reduced wasted ventilation - a residual contributory factor to exertional dyspnea during exercise in COPD.
-
Respir Physiol Neurobiol · Jan 2018
Effect of airway remodeling and hyperresponsiveness on complexity of breathing pattern in rat.
The complexity of respiratory dynamics is decreased, in association with disease severity, in patients with asthma. However, the pathophysiological basis of decreased complexity of breathing pattern in asthma is not clear. In the present study, we investigated the effect of airway remodeling and hyperresponsiveness induced by repeated bronchoconstriction (using methacholine) on breathing pattern in rats with or without allergen-induced sensitization. ⋯ However, these airway alterations had no significant effect on the complexity of breathing pattern in non-sensitized rats. Our results indicate that mechanical respiratory alterations cannot per se attenuate the complexity of respiratory dynamics, unless there is an underlying inflammation. We suggest further studies on underlying mechanisms of breathing variability with focus on respiratory control alterations due to airway inflammation.
-
Respir Physiol Neurobiol · Oct 2017
Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles.
Neural mechanisms of obstructive sleep apnea, a common sleep-related breathing disorder, are incompletely understood. Hypoglossal motoneurons, which provide tonic and inspiratory activation of genioglossus (GG) muscle (a major upper airway dilator), receive catecholaminergic input from medullary A1/C1 neurons. We aimed to determine the contribution of A1/C1 neurons in control of GG muscle during sleep and wakefulness. ⋯ In addition, CNO-induced inhibition of A1/C1 neurons did not alter the magnitude of the naturally occurring depression of GG activity during transitions from wakefulness to NREM sleep. These findings suggest that A1/C1 neurons have a net excitatory effect on GG activity that is most likely mediated by hypoglossal motoneurons. However, the activity of A1/C1 neurons does not appear to contribute to NREM sleep-related inhibition of GG muscle activity, suggesting that A1/C1 neurons regulate upper airway patency in a state-independent manner.