Translational research : the journal of laboratory and clinical medicine
-
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. ⋯ We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
-
Genetic diagnosis of familial hypercholesterolemia (FH) remains unexplained in 30 to 70% of patients after exclusion of monogenic disease. There is now a growing evidence that a polygenic burden significantly modulates LDL-cholesterol (LDL-c) concentrations. Several LDL-c polygenic risk scores (PRS) have been set up. ⋯ These results were replicated using the UK biobank. This new 165-SNP PRS, usable in routine diagnosis, exhibits better diagnosis abilities for a polygenic hypercholesterolemia diagnosis. It would be a valuable tool to optimize referral for whole genome sequencing.
-
Tyrosine kinase inhibitor (TKI) is a standard treatment for patients with NSCLC harboring constitutively active epidermal growth factor receptor (EGFR) mutations. However, most rare EGFR mutations lack treatment regimens except for the well-studied ones. We constructed two EGFR variant libraries containing substitutions, deletions, or insertions using the saturation mutagenesis method. ⋯ Moreover, the top 5% of the enriched insertion variants included a glycine or serine insertion at high frequency. We present a comprehensive reference for the sensitivity of EGFR variants to five commonly used TKIs. The approach used here should be applicable to other genes and targeted drugs.
-
Accurately modeling tumor biology and testing novel therapies on patient-derived cells is critically important to developing therapeutic regimens personalized to a patient's specific disease. The vascularized microtumor (VMT), or "tumor-on-a-chip," is a physiologic preclinical cancer model that incorporates key features of the native human tumor microenvironment within a transparent microfluidic platform, allowing rapid drug screening in vitro. ⋯ In response to standard chemotherapy and TGF-βR1 inhibition, we observe heterogeneous responses between pVMT derived from 6 patient biopsies, with the pVMT recapitulating tumor growth, histological features, metabolic heterogeneity, and drug responses of actual CRC tumors. Our results suggest that a translational infrastructure providing rapid information from patient-derived tumor cells in the pVMT, as established in this study, will support efforts to improve patient outcomes.
-
Gemcitabine (GEM) is the first-line medication for pancreatic ductal adenocarcinoma (PDAC). However, over some treatment cycles, GEM sensitivity declines and chemotherapeutic resistance develops, resulting in tumor recurrence and metastasis. Therefore, it is critical to elucidate the mechanism of GEM chemoresistance. ⋯ In vitro and in vivo, ATO combined with GEM has a collaborative anticancer effect, inhibiting cancer cell proliferation, migration, invasion, and suppressing tumor growth both in PDAC parental and GEM-resistant cells. Overall, the TIMP1/PI3K/AKT/mTOR pathway is present in PDAC and linked to GEM resistance. ATO suppresses the axis to sensitize GEM and reverse GEM resistance, suggesting a promising treatment for the disease.