European journal of pharmacology
-
Patients with sickle cell disease (SCD) can have recurrent episodes of vaso-occlusive crises, which are associated with severe pain. While opioids are the mainstay of analgesic therapy, in some patients, increasing opioid use results in continued and increasing pain. Many believe that this phenomenon results from opioid-induced tolerance or hyperalgesia or that SCD pain involves non-opioid-responsive mechanisms. ⋯ As expected, dexmedetomidine had a sedative effect in sickle and control mice as it decreased wakefulness scores compared with vehicle (all P<0.001). Interestingly, the effects of dexmedetomidine on hot plate latency and wakefulness scores were different in sickle and control mice, i.e., dexmedetomidine-related increases in hotplate latency and decreases in wakefulness scores were significantly smaller in Townes sickle compared to control mice. In conclusion, these findings of beneficial effects of dexmedetomidine on the nociception phenotype in SCD mice might support the conduct of studies of dexmedetomidine in SCD patients.
-
Berend Olivier has had a long-standing interest in the utility of animal models for a wide variety of therapeutic indications. His work has spanned multiple types of models, blending ethological, or species typical and naturalistic behaviors, along with methodologies based on learned behavior. He has consistently done so, from an analytical as well as predictive perspective, and has made multiple contributions while working in both the pharmaceutical industry and within an academic institution. ⋯ Despite the deficiencies, failures and concerns, existing animal models of pain continue to be of widespread use and are essential to progress in pain research as well as in other areas. Although not focusing on specific animal models of pain, this paper seeks to examine general issues facing the use of these models. It does so by exploring alternative approaches which capture recent developments, which build upon principles and concepts we have learned from Berend's contributions, and which provide the prospect of helping to address the absence of novel therapeutics in this area.
-
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. ⋯ Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
-
This study aimed to assess the local anesthetic effects of chlorpheniramine in spinal anesthesia and is compared with mepivacaine, a widely-used local anesthetic. Spinal anesthesia with chlorpheniramine and mepivacaine was constructed in a dosage-dependent fashion after the rats were injected intrathecally. The spinal block effect of chlorpheniramine in motor function, nociception, and proprioception was compared to that of mepivacaine. ⋯ On the equianesthetic basis (ED25, ED50, ED75), the duration of spinal anesthesia with chlorpheniramine was greater than that of mepivacaine (P<0.01 for the differences). Instead of mepivacaine, chlorpheniramine produced a greater duration of sensory blockade than the motor blockade. These preclinical data showed that chlorpheniramine has a better sensory-selective action over motor block to produce more potent and long-lasting spinal anesthesia than mepivacaine.
-
Hypertrophic scars are characterized by excessive fibrosis and extracellular matrix (ECM) deposition and can be functionally and cosmetically problematic; however, there are few satisfactory treatments for controlling hypertrophic scars. The inflammatory cells and cytokines involved in excessive inflammation during wound healing facilitate fibroblast proliferation and collagen deposition, leading to pathologic scar formation. TSG-6 exhibits anti-inflammatory activity. ⋯ The SEI and the synthesis of collagens I and III were significantly decreased in the TSG-6-treated scars compared with control scars. The apoptosis rate was higher in the TSG-6-treated scars. TSG-6 exhibited anti-inflammatory effects during the wound healing process and cicatrization and significantly diminished hypertrophic scar formation in a rabbit ear model.