European journal of pharmacology
-
The natural product (-) epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent found in green tea. Dorsal root ganglion neurons are primary sensory neurons, and express tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents, which are both actively involved in the generation and propagation of nociceptive signals. Effects of EGCG on tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents in rat dorsal root ganglion neurons were investigated using the whole-cell variation of the patch-clamp techniques. ⋯ Thus, EGCG appears to bind to resting Na(+) channels to inhibit them. EGCG slowed the recovery of tetrodotoxin-sensitive Na(+) current from inactivation. The property of EGCG to inhibit sensory Na(+) currents can be utilized to develop an analgesic agent.
-
Delta opioid receptor agonists are under development for a variety of clinical applications, and some findings in rats raise the possibility that agents with this mechanism have abuse liability. The present study assessed the effects of the non-peptidic delta opioid agonist SNC80 in an assay of intracranial self-stimulation (ICSS) in rats. ICSS was examined at multiple stimulation frequencies to permit generation of frequency-response rate curves and evaluation of curve shifts produced by experimental manipulations. ⋯ ICSS frequency-rate curves were also shifted by two non-pharmacological manipulations (reductions in stimulus intensity and increases in response requirement). Thus, SNC80 failed to facilitate or attenuate ICSS-maintained responding under conditions in which other pharmacological and non-pharmacological manipulations were effective. These results suggest that non-peptidic delta opioid receptor agonists have negligible abuse-related effects in rats.
-
The muscarinic acetylcholine receptor (mAChR) agonist, xanomeline, attenuates amphetamine-induced activity in WT mice. This effect is abolished in mice lacking the M(4) muscarinic acetylcholine receptor (M(4) mAChR KO) and partially attenuated in mice lacking M(1) muscarinic acetylcholine receptor (M(1) mAChR KO). Collectively, these data suggest that the efficacy exhibited by xanomeline in the mouse amphetamine-induced hyperactivity model, is mediated predominantly by M(4) muscarinic acetylcholine receptors, and that M(1) muscarinic acetylcholine receptors may play a more minor role. This supports the hypothesis that activation of M(4), and to a lesser extent M(1) muscarinic acetylcholine receptors, may represent a potential target for the treatment of psychosis seen in schizophrenia.
-
The neuropathic pain model consisting of the spared nerve injury of the sciatic nerve was used in the mouse to examine whether peripheral neuropathy is capable of generating over-expression of pro-inflammatory and pro-apoptotic genes in the orbito-frontal cortex, together with allodynia and hyperalgesia. RT-PCR analysis showed increased expression of caspase-1, caspase-12 and caspase-8 genes in the orbito-frontal cortex 14 days after spared nerve injury of the sciatic nerve. Conversely, the expression of caspase-3 was decreased by spared nerve injury of the sciatic nerve in the same brain area. ⋯ Ozone also reduced IL-1beta staining in the orbito-frontal cortex in neuropathic mice. This study provides evidence that a single subcutaneous administration of ozone decreased neuropathic pain type behaviour, normalized the expression of pro-inflammatory caspases and reduced IL-1beta staining in the orbito-frontal cortex astrocytes in SNI mice. These preliminary data show that peripheral neuropathy induced over-expression of pro-inflammatory/pro-apoptotic caspases in the orbito-frontal cortex and that ozone, by mechanisms that are as yet unknown, can regulate the expression of the genes that play a pivotal role in the onset and maintenance of allodynia.
-
Glutamate transporters may be important targets for anaesthetic action in the central nervous system. The authors investigated the effects of alphaxalone, an intravenous neurosteroid anaesthetic, on the activity of glutamate transporter type 3 (EAAT3). EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. ⋯ However, treatment with PMA plus alphaxalone did not increase responses further as compared with PMA or alphaxalone alone. Furthermore, pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, did not affect basal transporter currents, but did significantly reduce alphaxalone-enhanced EAAT3 activity; whereas oocytes pretreated with wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, showed significant reductions in basal and alphaxalone-enhanced EAAT3 activities. The above results suggest that alphaxalone enhances EAAT3 activity and that PKC and PI3K are involved in this effect.