British journal of pharmacology
-
The renin-angiotensin system (RAS) regulates blood pressure and electrolyte homeostasis. In addition, 'local' tissue-specific RAS have been identified, regulating regeneration, cell growth, apoptosis, inflammation and angiogenesis. Although components of the RAS are expressed in osteoblasts and osteoclasts, a local RAS in bone has not yet been described and there is no information on whether the RAS is involved in fracture healing. Therefore, we studied the expression and function of the key RAS component, angiotensin-converting enzyme (ACE), during fracture healing. ⋯ Our study provides evidence for a local RAS in bone that influenced the process of fracture healing. We show for the first time that inhibition of ACE is capable of accelerating bone healing and remodelling.
-
The multidrug resistance of epilepsy may result from the overexpression of P-glycoprotein, but the mechanisms are unclear. We investigated whether the overexpression of P-glycoprotein in the brains of subjects with pharmacoresistant epilepsy resulted from both drug effects and seizure activity. ⋯ The overexpression of P-glycoprotein in the brain of subjects with pharmacoresistant epilepsy is due to a combination of drug effects and epileptic seizures.
-
Although both microsomal prostaglandin E synthase (mPGES)-1 and cyclooxygenase (COX)-2 are critical factors in stroke injury, but the interactions between these enzymes in the ischaemic brain is still obscure. This study examines the hypothesis that mPGES-1 activity is required for COX-2 to cause neuronal damage in ischaemic injury. ⋯ Microsomal prostaglandin E synthase-1 and COX-2 are co-induced by excess glutamate in ischaemic brain. These enzymes are co-localized and act together to exacerbate stroke injury, by excessive PGE(2) production.
-
Platelet inhibitors are the mainstay treatment for patients with vascular diseases. The current 'gold standard' antiplatelet agent clopidogrel has several pharmacological and clinical limitations that have prompted the search for more effective platelet antagonists. ⋯ The pharmacology and clinical profiles of new platelet antagonists indicate that they provide more consistent, more rapid and more potent platelet inhibition than agents currently used. Whether these potential advantages will translate into clinical advantages will require additional comparisons in properly powered, randomized, controlled trials.
-
Results from several studies point to voltage-gated Na(+) channels as potential mediators of the immobility produced by inhaled anaesthetics. We hypothesized that the intrathecal administration of tetrodotoxin, a drug that blocks Na(+) channels, should enhance anaesthetic potency, and that concurrent administration of veratridine, a drug that augments Na(+) channel opening, should reverse the increase in potency. ⋯ Intrathecal administration of tetrodotoxin increases isoflurane potency (decreases isoflurane MAC), and intrathecal administration of veratridine counteracts this effect in vivo. These findings are consistent with a role for voltage-gated Na(+) channel blockade in the immobility produced by inhaled anaesthetics.