British journal of pharmacology
-
Angiotensin II receptor blockers (AIIRBs) have been shown to prevent atrial fibrillation. The pulmonary veins (PVs) are the most important focus for the generation of atrial fibrillation. The aim of this study was to evaluate whether angiotensin II or AIIRB may change the arrhythmogenic activity of the PVs. ⋯ Angiotensin II reduced the transient outward potassium current (I(to)) but increased the L-type calcium, delayed rectifier potassium (I(K)), transient inward (I(ti)), pacemaker, and Na(+)-Ca(2+) exchanger (NCX) currents in the PV cardiomyocytes. Losartan decreased the I(to), I(K), I(ti), and NCX currents. In conclusion, angiotensin II and AIIRB modulate the PV electrical activity, which may play a role in the pathophysiology of atrial fibrillation.
-
This study investigated whether KMUP-1, a synthetic xanthine-based derivative, augments the delayed-rectifier potassium (K(DR))- or large-conductance Ca2+-activated potassium (BKCa) channel activity in rat basilar arteries through protein kinase-dependent and -independent mechanisms. Cerebral smooth muscle cells were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K+- and Ca2+ channel activities. ⋯ Voltage-dependent L-type Ca2+ current was significantly suppressed by KMUP-1 (1 microM), and nearly abolished by a calcium channel blocker (nifedipine, 1 microM). In conclusion, KMUP-1 stimulates BKCa currents by enhancing the activity of cGMP-dependent protein kinase, and in part this is due to increasing cAMP-dependent protein kinase. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and the relaxation of cerebral arteries.
-
Ketamine shows, besides its general anaesthetic effect, a potent analgesic effect after spinal administration. We investigated the local anaesthetic-like action of ketamine and its enantiomers in Na+ and K+ channels and their functional consequences in dorsal horn neurones of laminae I-III, which are important neuronal structures for pain transmission receiving most of their primary sensory input from Adelta and C fibres. Combining the patch-clamp recordings in slice preparation with the 'entire soma isolation' method, we studied action of ketamine on Na+ and voltage-activated K+ currents. ⋯ The block of K(DR) channels led to an increase in action potential duration and, as a consequence, to lowering of the discharge frequency in the neurones. We conclude that ketamine blocks Na+ and K(DR) channels in superficial dorsal horn neurones of the lumbar spinal cord at clinically relevant concentrations for local, intrathecal application. Ketamine reduces the excitability of the neurones, which may play an important role in the complex mechanism of its action during spinal anaesthesia.
-
Comparative Study
Interactions of metoclopramide and ergotamine with human 5-HT(3A) receptors and human 5-HT reuptake carriers.
The actions of metoclopramide and ergotamine, drugs which are used as a combined migraine medication, on human (h)5-HT3A receptors and 5-HT reuptake carriers, stably expressed in HEK-293 cells, were studied with patch-clamp- and ([3H]5-HT)-uptake techniques. At clinical concentrations, metoclopramide inhibited peak and integrated currents through h5-HT3A receptors concentration-dependently (IC50 = 0.064 and 0.076 microM, respectively) when it was applied in equilibrium (60 s before and during 5-HT (30 microM) exposure). The onset and offset time constants of metoclopramide action were 1.3 and 2.1 s, respectively. ⋯ Above clinical concentrations, ergotamine (>3 microM) inhibited them. When both drugs were applied together (0.10 microM metoclopramide +0.001 to 0.01 microM ergotamine), an inhibition of both, peak and integrated current responses was observed. Neither metoclopramide (< or =30 microM) nor ergotamine (< or =30 microM) had an effect on the 5-HT reuptake carrier as they did not alter the citalopram-sensitive [3H]5-HT uptake.
-
Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg(-1) i.v.) or DL-propargylglycine (PAG, 10-100 mg kg(-1) i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-gamma-lyase (CSE). ⋯ Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock.