British journal of pharmacology
-
Comparative Study
Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors.
1 Neuroprotection has been reported after either activation or blockade of the group I metabotropic glutamate receptor subtype 5 (mGluR5). However, some recent evidence suggests that protection provided by mGluR5 antagonists may reflect their ability to inhibit N-methyl-D-aspartate (NMDA) receptor activity. 2 Here, in both rat and mouse cortical neurons, we compare the neuroprotective actions of two mGluR5 antagonists: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), which has been commonly used and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), a more recently developed compound believed to have greater mGluR5 selectivity. We have previously shown that MPEP directly reduces single-channel NMDA receptor open time at the same concentrations (20 microM or greater) that show neuroprotection, whereas MPEP antagonizes mGluR5 agonist ((RS)-2-chloro-5-hydroxyphenylglycine (CHPG))-induced changes in inositol phosphates (IP) at concentrations as low as 0.2 microM. 3 In the present studies, MTEP significantly inhibited CHPG-mediated IP hydrolysis at concentrations as low as 0.02 microM. ⋯ In rat cortical neurons, the neuroprotective effects of MTEP at very high concentrations, like those of MPEP, reflect ability to directly reduce NMDA receptor peak and steady-state currents. 4 We also compared the effects of MPEP and MTEP in primary cortical neuronal cultures from parental and mGluR5 knockout mice. Both agents were neuroprotective, at high concentrations in normal as well as in the knockout cultures. In contrast to rat cortical neurons, neither MPEP nor MTEP appears to directly alter NMDA receptor activity. 5 Combined, these studies support the conclusion that MTEP has greater mGluR5 selectivity than MPEP, and that neuroprotection provided by either antagonist in neuronal cultures does not reflect inhibition of mGluR5 receptors.
-
Comparative Study
D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons.
1 The amino acid, D-aspartate, exists in the mammalian brain and is an agonist at the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors. Here, for the first time, we studied the actions of D-aspartate on alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptors (AMPARs) in acutely isolated rat hippocampal neurons. 2 In the presence of the NMDA receptor channel blocker, MK801, D-aspartate inhibited kainate-induced AMPAR current in hippocampal neurons. The inhibitory action of D-aspartate on kainate-induced AMPAR current was concentration-dependent and was voltage-independent in the tested voltage range (-80 to +60 mV). 3 The estimated EC50 of the L-glutamate-induced AMPAR current was increased in the presence of D-aspartate, while the estimated maximum L-glutamate-induced AMPAR current was not changed. ⋯ The K(b) for D-aspartate was estimated to be 0.93 mM. 4 D-aspartate also blocked L-glutamate-induced current in Xenopus laevis oocytes that expressed recombinant homomeric AMPARs. 5 NMDA possessed similar inhibitory action on AMPARs. However, L-aspartate had little inhibitory action on AMPARs. 6 D-Aspartate, but not L-aspartate, was found to reduce the amplitude of miniature excitatory postsynaptic current in cultured hippocampal neurons. 7 Our data are consistent with a model in which D-aspartate directly competes with kainate and L-glutamate in binding to the agonist binding site of AMPARs. The prevalence of D-aspartate in the brain suggests a possible role of D-aspartate in modulating AMPAR-mediated fast excitatory synaptic transmission.
-
1. Cannabinoid receptor agonists elicit analgesic effects in acute and chronic pain states via spinal and supraspinal pathways. We investigated whether the combination of a cannabinoid agonist with other classes of antinociceptive drugs exerted supra-additive (synergistic) or additive effects in acute pain models in mice. 2. ⋯ Thus, an alpha2-adrenoceptor agonist or mu opioid receptor agonist when combined with a cannabinoid receptor agonist showed significant synergy in antinociception in the hot plate test. However, for the tail flick nociceptive response to heat, only cannabinoid and mu opioid receptor antinociceptive synergy was demonstrated. If these results translate to humans, then prudent selection of dose and receptor-specific agonists may allow an improved therapeutic separation from unwanted side effects.
-
1. Although an important regulatory role for serotonin (5-HT) in seizure activation and propagation is well established, relatively little is known of the function of specific 5-HT receptor subtypes on seizure modulation. 2. The aim of the present study was to investigate the role of 5-HT(1A, 1B and 1D) receptors in modulating generalised seizures in the rat maximal electroshock seizure threshold (MEST) test. 3. ⋯ This indicates that 5-HT1B receptors are primarily involved in mediating the anticonvulsant properties of these agents. 6. In addition, the ability of the 5-HT(1B/1D) receptor antagonist GR 127935 (0.3-3 mg kg(-1) s.c., 60 min pretest) to dose-dependently inhibit SKF 99101-induced elevation of seizure threshold also suggests possible downstream involvement of 5-HT1D receptors in the action of this agonist, although confirmation awaits the identification of a selective 5-HT1D receptor antagonist. 7. Overall, these data demonstrate that stimulation of postsynaptic 5-HT1B receptors inhibits electroshock-induced seizure spread in rats.
-
1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. ⋯ The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.