Medical hypotheses
-
The main predictors of examination results and educational achievement in modern societies are intelligence (IQ - or general factor 'g' intelligence) and the personality trait termed 'Conscientiousness' (C). I have previously argued that increased use of continuous assessment (e.g. course work rather than timed and supervised examinations) and increased duration of the educational process implies that modern educational systems have become increasingly selective for the personality trait of Conscientiousness and consequently less selective for IQ. I have tested this prediction (in a preliminary fashion) by looking at the sex ratios in the most selective elite US universities. ⋯ There is a 'missing population' of very high IQ men who are not being admitted to the most selective and prestigious undergraduate schools, probably because their high school educational qualifications and evaluations are too low. This analysis is therefore consistent with the hypothesis that modern educational systems tend to select more strongly for Conscientiousness than for IQ. The implication is that modern undergraduates at the most-selective US schools are not primarily an intelligence elite, as commonly assumed, but instead an elite for Conscientious personality.
-
Fibromyalgia syndrome (FMS) is a chronic widespread pain syndrome that is estimated to affect 4-8 million US adults. The exact molecular mechanisms underlying this illness remain unclear, rendering most clinical treatment and management techniques relatively ineffective. It is now known that abnormalities in both nociceptive and central pain processing systems are necessary (but perhaps not sufficient) to condition the onset and maintenance of FMS. ⋯ The current scope of FMS treatment focuses largely on analgesia and does not clearly address potential neuroprotective strategies. This article proposes a combined treatment of pregabalin and memantine to decrease the pain and rate of gray matter atrophy associated with FMS. This dual-drug therapy targets the voltage-gated calcium ion channel (VGCC) and the N-methyl d-aspartate receptor (NMDAR) (respectively), two primary components of the human nociceptive and pain processing systems.