Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Sep 2013
Blockade of the purinergic P2Y12 receptor greatly increases the platelet inhibitory actions of nitric oxide.
Circulating platelets are constantly exposed to nitric oxide (NO) released from the vascular endothelium. This NO acts to reduce platelet reactivity, and in so doing blunts platelet aggregation and thrombus formation. For successful hemostasis, platelet activation and aggregation must occur at sites of vascular injury despite the constant presence of NO. ⋯ This powerful synergism is explained by blockade of a P2Y12 receptor-dependent, NO/cGMP-insensitive phosphatidylinositol 3-kinase pathway of platelet activation. These studies demonstrate that activation of the platelet ADP receptor, P2Y12, severely blunts the inhibitory effects of NO. The powerful antithrombotic effects of P2Y12 receptor blockers may, in part, be mediated by profound potentiation of the effects of endogenous NO.
-
Proc. Natl. Acad. Sci. U.S.A. · Sep 2013
Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy.
Tissue-conserving surgery is used increasingly in cancer treatment. However, one of the main challenges in this type of surgery is the detection of tumor margins. Histopathology based on tissue sectioning and staining has been the gold standard for cancer diagnosis for more than a century. ⋯ This automated sampling strategy allowed objective diagnosis of basal cell carcinoma in skin tissue samples excised during Mohs micrographic surgery faster than frozen section histopathology, and one or two orders of magnitude faster than previous techniques based on infrared or Raman microscopy. We also show that this technique can diagnose the presence or absence of tumors in unsectioned tissue layers, thus eliminating the need for tissue sectioning. This study demonstrates the potential of this technique to provide a rapid and objective intraoperative method to spare healthy tissue and reduce unnecessary surgery by determining whether tumor cells have been removed.
-
The quest to implement intelligent processing in electronic neuromorphic systems lacks methods for achieving reliable behavioral dynamics on substrates of inherently imprecise and noisy neurons. Here we report a solution to this problem that involves first mapping an unreliable hardware layer of spiking silicon neurons into an abstract computational layer composed of generic reliable subnetworks of model neurons and then composing the target behavioral dynamics as a "soft state machine" running on these reliable subnets. In the first step, the neural networks of the abstract layer are realized on the hardware substrate by mapping the neuron circuit bias voltages to the model parameters. ⋯ The abstract computational layer is formed by configuring neural networks as generic soft winner-take-all subnetworks that provide reliable processing by virtue of their active gain, signal restoration, and multistability. The necessary states and transitions of the desired high-level behavior are then easily embedded in the computational layer by introducing only sparse connections between some neurons of the various subnets. We demonstrate this synthesis method for a neuromorphic sensory agent that performs real-time context-dependent classification of motion patterns observed by a silicon retina.
-
Proc. Natl. Acad. Sci. U.S.A. · Sep 2013
Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome.
Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. ⋯ Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.