Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2013
Clinical TrialExaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease.
An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing neurosurgery. ⋯ Peaks in M1 γ-amplitude are coupled to, and precede, the subthalamic nucleus β-trough. The results prompt a model of the basal ganglia-cortical circuit in Parkinson disease incorporating phase-amplitude interactions and abnormal corticosubthalamic feedback and suggest that M1 local field potentials could be used as a control signal for automated programming of basal ganglia stimulators.
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2013
Clinical TrialElectroencephalogram signatures of loss and recovery of consciousness from propofol.
Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. ⋯ During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase-amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA.
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2013
Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis.
Mechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. ⋯ Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2013
L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors.
Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. ⋯ Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.
-
Proc. Natl. Acad. Sci. U.S.A. · Feb 2013
Clinical TrialGenomic responses in mouse models poorly mimic human inflammatory diseases.
A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. ⋯ Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.