Annals of the New York Academy of Sciences
-
Ann. N. Y. Acad. Sci. · Dec 1998
Coordinated role of vasoactive intestinal peptide and nitric oxide in cardioprotection.
The present study sought to examine the interrelationship between nitric oxide (NO) and vasoactive intestinal peptide (VIP) in myocardial protection. Isolated rat hearts were perfused for 15 min with buffer only (Group I); 0.3 mM VIP (Group II); 3 mM L-arginine (a precursor of NO) (Group III); VIP and aminoguanidine (iNOS blocker) (Group IV); or L-arginine plus VIP 10-28 (VIP inhibitor) (Group V). ⋯ However, the beneficial effects of VIP and NO were reduced by inhibition of NO and VIP, respectively, suggesting that cardioprotection by VIP is modulated by NO and vice versa. The results of this study suggested a coordinated regulation by cardioprotection by NO and VIP.
-
Ann. N. Y. Acad. Sci. · Nov 1998
Alterations in the neurotrophic factors BDNF, GDNF and CNTF in the regenerating olfactory system.
Neurogenesis, axonal outgrowth and synapse formation are usually restricted to specific stages during central nervous system development, but the mature olfactory system maintains these capacities. The cycle of neuronal turnover can be experimentally induced by surgical ablation of the olfactory bulb (OB). We are interested in the growth factor regulation of these processes and the trophic role played by the target tissue, the OB. ⋯ Expression of CNTF by both the basal cells and the ORNs suggests that it may play an integral role in this neuronal differentiation pathway. Finally, the expression of GDNF exclusively by mature ORNs in the ON, its presence in the target cells in the OB and abolition of expression by bulbectomy, suggests that it may be target-derived. This provides a major mechanism by which the bulb could exert trophic influences on ORNs.
-
Psychophysical and electrophysiological studies indicated that the umami substances have no enhancing activity on other primary tastes. Experiments using amiloride clearly show that the umami component of canine chorda tympani nerve response to umami substances is independent of the salt component. Single fiber analysis of the responses of the mouse glossopharyngeal nerve and the monkey primary taste cortex neuron show that the responses to umami substances are independent of other primary tastes. ⋯ The order of intensity of umami taste induced by a mixture of 0.5 mM GMP and 1.5 mM of various agonists for the glutamate receptors was glutamate > ibotenate > DL(+)-2-amino-4-phosphonobutyric acid (DL-AP4)-(+)-1- aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD). Kainate, N-methyl-D-aspartate (NMDA) and (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), which are agonists for ionotropic receptors, have no umami taste. It was concluded that the umami receptor is not identical to any of known glutamate receptors, and there seems to be a unique receptor for umami.