Pain
-
Pain-related adaptations in movement require a network architecture that allows for integration across pain and motor circuits. Previous studies addressing this issue have focused on cortical areas such as the midcingulate cortex. Here, we focus on pain and motor processing in the human cerebellum. ⋯ Activation in these multimodal regions persisted when pain and motor processes were combined within the same trial, and activation in contralateral left lobule VIIb persisted when stimulation was controlled for. Functional connectivity analyses revealed significant correlations in the BOLD time series between multimodal cerebellar regions and sensorimotor regions in the cerebrum including anterior midcingulate cortex, supplementary motor area, and thalamus. The current findings are the first to show multimodal processing in lobules VI and VIIb for motor control and pain processing and suggest that the posterior cerebellum may be important in understanding pain-related adaptations in motor control.
-
Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. ⋯ Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.