Neuroscience
-
Visuospatial attention allows humans to selectively gate and prioritize visual (including salient, emotional) information for efficiently navigating natural visual environments. As emotions have been known to influence attentional performance, we asked if emotions also modulate the spatial distribution of visual attention and whether any such effect was further associated with individual differences in anxiety. Participants (n = 28) discriminated the orientation of target Gabor patches co-presented with distractors, speedily and accurately. ⋯ No correlation was observed between state - anxiety and the emotion-cued attention gradients. In sum, the results suggest that individual trait - anxiety levels influence the effect of negative and physiologically arousing emotion signals (e.g., Disgust) on the spatial distribution of visual attention. The findings could be of relevance for understanding biases in visual behaviour underlying affective states and disorders.
-
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder that results in irreversible cognitive impairments. Nonetheless, there are numerous sex-dependent differences in clinical course. We examined potential contributions of neurovascular coupling deficits to sex differences in AD progression. ⋯ There were significant group × sex interaction effects on short-range coupling ratios of right middle temporal gyrus, left angular gyrus, left inferior orbital frontal gyrus, and left superior frontal gyrus as well as on the long-range coupling ratios of right middle temporal gyrus, left precuneus, left posterior cingulate cortex, and left angular gyrus. There were significant negative correlations between MMSE scores and CBF/FCS ratios for all regions with significant group × sex interactions among female patients, while positive correlations were found among male patients. Our results demonstrate significant sex differences in neurovascular coupling mechanisms associated with cognitive function during the course of AD.
-
Procrastination is regarded as a prevalent problematic behavior that impairs people's physical and mental health. Although previous studies have indicated that trait rumination is robustly positively correlated with procrastination, it remains unknown about the neural substrates underlying the relationship between trait rumination and procrastination. To address this issue, we used voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) approaches to explore the neural basis of the relationship between trait rumination and procrastination. ⋯ Furthermore, the RSFC results revealed a negative association of the left insula-lmSFG (left medial superior frontal gyrus) functional connectivity with trait rumination. More importantly, the mediation analysis showed that trait rumination could completely mediate the relationship between left insula-lmSFG functional connectivity and procrastination. These results suggest that the left insula-lmSFG functional connectivity involved in emotion regulation modulates the association between trait rumination and procrastination, which provides neural evidence for the relationship between trait rumination and procrastination.
-
Maintaining balance is thought to primarily occur sub-consciously. Occasionally, however, individuals will direct conscious attention towards balance, e.g., in response to a threat to balance. Such conscious movement processing (CMP) increases the reliance on attentional resources and may disrupt balance performance. ⋯ We observed reduced beta band IMC between several muscle pairs during high- compared to low-CMP, but these findings did not remain significant after controlling for multiple comparisons. Finally, IMC significantly increased in the unstable conditions for most muscle combinations and frequency bands. In all, results tentatively suggest that CMP-induced changes in sway outcomes may be facilitated by reduced beta-band IMC, but these findings need to be replicated before they can be interpreted more conclusively.
-
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. ⋯ Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.