Neuroscience
-
Review
Advances in diagnostic imaging and interventional treatment of aphasia after basal ganglia stroke.
Post-stroke basal ganglia aphasia is an unusual and transient form of aphasia resulting from basal ganglia damage. It is commonly believed that the generation of language function primarily resides in regular language regions of the brain; however, recent findings indicate a prevalence of basal ganglia stroke aphasia as high as 22%. Subcortical structures (e.g., basal ganglia) also play an important role in language processing. ⋯ Treatment for post-stroke basal ganglia aphasia includes transcranial magnetic stimulation, a recent emerging therapeutic technique, in addition to conventional medications and speech rehabilitation. Consequently, understanding this condition is crucial. This review delves into its causes, imaging methods, and therapeutic interventions, offering a systematic and comprehensive analysis of these aspects.
-
Spatial cognitive ability is critical for table tennis athletes to achieve excellent competitive performance, and sleep may be an important factor influencing this ability. This study investigated the impact of 36h sleep deprivation on the spatial cognitive processing of 20 s-level table tennis athletes, using event-related potentials and functional connectivity analysis to assess changes in cognitive resource allocation and inter-regional brain coordination before and after sleep deprivation. ⋯ After 36 h of SD, the spatial cognitive ability of table tennis athletes was impaired. SD not only led to a reduction in the allocation of attentional resources and cognitive processing capabilities in these athletes, but also weakened functional connectivity between the frontal and occipital lobes of the brain.
-
Face recognition is an important aspect of human non-verbal communication. Event-related potentials or magnetic fields, such as the N170/M170 component, are considered essential neural markers of face processing. Compared to upright human faces, inverted human faces and upright but not inverted animal faces cause longer latencies and larger amplitudes of these components. ⋯ Additionally, face orientation differentially modulated the anterior region of the fusiform gyrus (FG) in both face categories. These results suggest that spatiotemporal dynamics differ in face orientation regardless of category and that the FG contributes little or nothing to the M170 modulation recorded in the scalp sensor. Furthermore, we demonstrated that inverted human and animal faces are processed via different mechanisms.
-
Reaching movements are essential for daily tasks and they have been widely investigated through kinematic, kinetic, and electromyographic (EMG) analyses. Recent studies have also suggested that the central nervous system simplifies movement control by using muscle synergies. An alternative approach is to investigate how EMG activity reflects at theneural level with the spinal maps representation that visualizes the spatiotemporal activity of motoneuronal pools. ⋯ The multidimensional Pearson's correlation coefficient was used to assess thesimilarity of spinal maps among repetitions of movements within subjects (intra-subject variability) and among participants (inter-subject variability). Spinal maps of tonic and total EMG showed high intra- and inter-subject similarity in all planes, while phasic spinal maps were less repeatable and more subject-specific. These results may be useful as areference for rehabilitation, clinical, and neurological evaluations, especially for longitudinal assessments.