Journal of applied physiology
-
Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. ⋯ The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm(3) anterior, -0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 +/- 3.6 ml.min(-1).g(-1) prone, 5.1 +/- 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.
-
This research investigated whether stretching of lung tissue due to increased positive alveolar pressure swings during mechanical ventilation (MV) at various tidal volumes (V(T)) might affect the composition and/or structure of the glycosaminoglycan (GAG) components of pulmonary extracellular proteoglycans. Experiments were performed in 30 healthy rats: 1) anesthetized and immediately killed (controls, C-0); 2) anesthetized and spontaneously breathing for 4 h (C-4h); and 3) anesthetized, paralyzed, and mechanically ventilated for 4 h with air at 0-cmH(2)O end-expiratory pressure and V(T) of 8 ml/kg (MV-1), 16 ml/kg (MV-2), 24 ml/kg (MV-3), or 32 ml/kg (MV-4), adjusting respiratory rates at a minute ventilation of 270 ml/min. ⋯ Extraction of covalently bound GAGs and wash out of loosely bound or fragmented GAGs progressively increased with increasing V(T) and was associated with increased expression of local (matrix metalloproteinase-2) and systemic (matrix metalloproteinase-9) activated metalloproteases. We conclude that 1) MV, even at "physiological" low V(T), severely affects the pulmonary extracellular architecture, exposing the lung parenchyma to development of ventilator-induced lung injury; and 2) respiratory mechanics is not a reliable clinical tool for early detection of lung injury.
-
Intubation and mechanical ventilation after burn contribute to pneumonia-related infection. Although postburn presence or absence of endotoxin has been described, inactivation of Toll-like receptor 4 signaling has been shown to improve postburn organ function, suggesting that LPS participates in burn-related susceptibility to infection. We hypothesized that bactericidal/permeability-increasing protein (rBPI) given postburn would attenuate myocardial inflammation/dysfunction associated with postburn septic challenge given 7 days postburn. ⋯ Cardiomyocyte cytokine secretion and myocardial function were studied 24 h after septic challenge, postburn day 8. Pneumonia-related infection 8 days after vehicle-treated burn produced myocyte cytokine secretion (pg/ml), indicated by increased myocyte TNF-alpha, 549 +/- 46; IL-1beta, 50 +/- 8; IL-6, 286 +/- 3 levels compared with levels in sham myocytes (TNF-alpha, 88 +/- 11; IL-1beta, 7 +/- 1; IL-6, 74 +/- 10; P < 0.05). Contractile dysfunction was evident from lower left ventricular pressure +/-dP/dt values in this group compared with sham. rBPI attenuated myocyte cytokine responses to septic challenge and improved contractile function, suggesting that burn-related mobilization of microbial-like products contribute to postburn susceptibility to infection.
-
Anemia may worsen neurological outcomes following traumatic brain injury (TBI) by undefined mechanisms. We hypothesized that hemodilutional anemia accentuates hypoxic cerebral injury following TBI. Anesthetized rats underwent unilateral TBI or sham injury (n > or = 7). ⋯ Cerebral contusion area and nuclear counts for programmed cell death were increased following TBI-anemia (4.1 +/- 3.0 mm(2) and 686 +/- 192, respectively) relative to TBI alone (1.3 +/- 0.3 mm(2) and 404 +/- 133, respectively, P < 0.05 for both). Hemodilutional anemia reduced cerebral Pbr(O(2)) and oxygen extraction and increased cell death following TBI. These results support our hypothesis that acute anemia accentuated hypoxic cerebral injury after neurotrauma.