Journal of applied physiology
-
Elderly white, thin, nonsmoking women appear to be more susceptible to lung infections with Mycobacterium avium complex and other nontuberculous mycobacteria (NTM). It has been postulated that such disease in women is related to suppression of their cough. We hypothesized that patients with pulmonary NTM (pNTM) infections may have altered cough physiology compared with unaffected control subjects. ⋯ NEW & NOTEWORTHY This study investigates the cough motor response and cough sensitivity in patients with nontuberculous mycobacteria (NTM) infection. In elderly white female pulmonary NTM subjects, we demonstrated a capacity to produce coughs similar to that of age-matched control subjects but decreased cough sensitivity in response to a low dose of capsaicin compared with control subjects. These findings are important to understand the pathophysiological mechanisms resulting in NTM disease in elderly white women and/or the syndrome developing in elderly white female NTM patients.
-
Remote ischemic conditioning has been convincingly shown to render the myocardium resistant to a subsequent more severe sustained episode of ischemia. Compared with other organs, little is known regarding the effect of transient liver ischemic conditioning. We proposed the existence of cardioprotection induced by remote liver conditioning. ⋯ However, it is unclear whether ischemic conditioning of visceral organs such as the liver, the largest metabolic organ in the body, can produce cardioprotection. This is the first study to show the cardioprotective effect of remote liver ischemic conditioning in a rat model of myocardial I/R injury. We also, for the first time, demonstrated these protective properties are associated with glycogen synthase kinase-3β-dependent cell-survival signaling pathway.
-
Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. ⋯ NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.
-
Randomized Controlled Trial
Contribution of rostral fluid shift to intrathoracic airway narrowing in asthma.
In asthma, supine posture and sleep increase intrathoracic airway narrowing. When humans are supine, because of gravity fluid moves out of the legs and accumulates in the thorax. We hypothesized that fluid shifting out of the legs into the thorax contributes to the intrathoracic airway narrowing in asthma. ⋯ NEW & NOTEWORTHY In supine asthmatic subjects, application of positive pressure to the lower body caused appreciable increases in respiratory system resistance and stiffness. Moreover, these changes in respiratory mechanics correlated positively with increase in thoracic fluid volume. These findings suggest that fluid shifts from the lower body to the thorax may contribute to overnight intrathoracic airway narrowing and worsening of asthma symptoms.
-
Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. ⋯ NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results obtained in an acute respiratory distress syndrome patient show the potential of this approach for personalized computationally guided optimization of mechanical ventilation in future.