Journal of applied physiology
-
Randomized Controlled Trial
Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
To determine if fatigue at maximal aerobic power output was associated with a critical decrease in cerebral oxygenation, 13 male cyclists performed incremental maximal exercise tests (25 W/min ramp) under normoxic (Norm: 21% Fi(O2)) and acute hypoxic (Hypox: 12% Fi(O2)) conditions. Near-infrared spectroscopy (NIRS) was used to monitor concentration (microM) changes of oxy- and deoxyhemoglobin (Delta[O2Hb], Delta[HHb]) in the left vastus lateralis muscle and frontal cerebral cortex. Changes in total Hb were calculated (Delta[THb] = Delta[O2Hb] + Delta[HHb]) and used as an index of change in regional blood volume. ⋯ Delta[THb]), although Delta[O2Hb] was unchanged between 75 and 100% Power peak. Changes in muscle oxygenation were also greater in Hypox compared with Norm. On the basis of these findings, it is unlikely that changes in cerebral oxygenation limit incremental exercise performance in normoxia, yet it is possible that such changes play a more pivotal role in hypoxia.
-
Randomized Controlled Trial
Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training.
This study employed longitudinal measures of evoked spinal reflex responses (Hoffman reflex, V wave) to investigate changes in the activation of muscle and to determine if there are "linked" neural adaptations in the motor pathway following isometric resistance training. Twenty healthy, sedentary males were randomly assigned to either the trained (n = 10) or control group (n = 10). The training protocol consisted of 12 sessions of isometric resistance training of the plantar flexor muscles over a 4-wk period. ⋯ Hslp/Mslp was not altered by training; however, V/Mmax increased 57.3 +/- 34.2% during MVC. These results suggest that increases in MVC observed in the first few days of isometric resistance training can be accounted for by an increase in the rate of activation at the onset of muscle contraction. Augmentation of muscle activation may be due to increased volitional drive from supraspinal centers.
-
Comparative Study
Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation.
Assessment of dynamic cerebral autoregulation (CA) requires continuous recording of arterial blood pressure (ABP). In humans, noninvasive ABP recordings with the Finapres device have often been used for this purpose. We compared estimates of dynamic CA derived from Finapres with those from invasive recordings in the aorta. ⋯ The phase frequency response was significantly greater for the Finapres estimates at frequencies >0.1 Hz, but not at lower frequencies. The Finapres gives higher values for the efficiency of dynamic CA compared with values derived from aortic pressure measurements, as indicated by biases in the ARI index, CBFV step response, gain, and phase. Despite the significance of these biases, their relatively small amplitude indicates a good level of agreement between indexes of CA derived from the Finapres compared with corresponding estimates obtained from invasive measurements of aortic ABP.
-
We hypothesized that patients who fail weaning from mechanical ventilation recruit their inspiratory rib cage muscles sooner than they recruit their expiratory muscles, and that rib cage muscle recruitment is accompanied by recruitment of sternomastoid muscles. Accordingly, we measured sternomastoid electrical activity and changes in esophageal (DeltaPes) and gastric pressure (DeltaPga) in 11 weaning-failure and 8 weaning-success patients. At the start of trial, failure patients exhibited a higher DeltaPga-to-DeltaPes ratio than did success patients (P = 0.05), whereas expiratory rise in Pga was equivalent in the two groups. ⋯ The sequence began with activity of diaphragm and greater-than-normal activity of inspiratory rib cage muscles; recruitment of sternomastoids and rib cage muscles approached near maximum within 4 min of trial commencement; expiratory muscles were recruited slowest of all. In conclusion, not only is activity of the inspiratory rib cage muscles increased during a failed weaning trial, but respiratory centers also recruit sternomastoid and expiratory muscles. Extradiaphragmatic muscle recruitment may be a mechanism for offsetting the effects of increased load on a weak diaphragm.
-
Comparative Study
Cerebral oxygen delivery by liposome-encapsulated hemoglobin: a positron-emission tomographic evaluation in a rat model of hemorrhagic shock.
Liposome-encapsulated Hb (LEH) is being developed as an artificially assembled, low-toxicity, and spatially isolated Hb-based oxygen carrier (HBOC). Standard methods of evaluating oxygen carriers are based on surrogate indicators of physiology in animal models of shock. Assessment of actual delivery of oxygen by HBOCs and resultant improvement in oxygen metabolism at the tissue level has been a technical challenge. ⋯ Saline and HSA resuscitation could not improve hypovolemia-induced decrease in CMR(O2). On the other hand, resuscitation of shed blood was the most efficient in restoring oxygen metabolism. The results suggest that 15O-PET technology can be successfully employed to evaluate potential oxygen carriers and blood substitutes and that LEH resuscitation in hemorrhage enhances oxygen delivery to the cerebral tissue and improves oxygen metabolism in brain.