Journal of neurotrauma
-
Journal of neurotrauma · Aug 2023
Randomized Controlled TrialRandomized evaluation of CDC HEADS UP concussion education materials for youth sport coaches.
The Centers for Disease Control and Prevention (CDC) HEADS UP youth sports coach materials are the most widely adopted form of concussion education for coaches across the United States-reaching millions of youth sports coaches over the last decade. These materials focus on concussion symptom identification, response, and management (e.g., return to school and sports), while also addressing the importance of communicating to athletes and their families about concussion safety. The purpose of this study was to assess the effectiveness of CDC HEADS UP materials on coach knowledge and communication with youth athletes about concussion safety. ⋯ Concussion symptom knowledge and communication intentions also significantly increased in the intervention group but not in the control group. This study provides evidence that CDC HEADS UP materials increase the likelihood that youth sport coaches communicate with their athletes about concussion safety. As youth sports organizations increasingly mandate concussion education for coaches, CDC HEADS UP materials may be considered a leading resource for adoption and setting-relevant implementation.
-
Journal of neurotrauma · Aug 2023
Multicenter StudyMachine Learning to Predict Three Types of Outcomes After Traumatic Brain Injury Using Data at Admission: A Multicenter Study for Development and Validation.
The difficulty of accurately identifying patients who would benefit from promising treatments makes it challenging to prove the efficacy of novel treatments for traumatic brain injury (TBI). Although machine learning is being increasingly applied to this task, existing binary outcome prediction models are insufficient for the effective stratification of TBI patients. The aim of this study was to develop an accurate 3-class outcome prediction model to enable appropriate patient stratification. ⋯ As a result, it is expected to be more impactful in the development of appropriate patient stratification methods in future TBI studies than conventional binary prognostic models. Further, outcomes were predicted based on only clinical data obtained from the emergency department. However, developing a robust model with consistent performance in diverse scenarios remains challenging, and further efforts are needed to improve generalization performance.
-
Journal of neurotrauma · Aug 2023
Associations of Microvascular Injury-Related Biomarkers with Traumatic Brain Injury Severity and Outcomes: A TRACK-TBI Pilot Study.
Traumatic brain injury (TBI) is characterized by heterogeneity in terms of injury severity, mechanism, outcome, and pathophysiology. A single biomarker alone is unlikely to capture the heterogeneity of even one injury subtype, necessitating the use of panels of biomarkers. Herein, we focus on traumatic cerebrovascular injury and investigate associations of a panel of 16 vascular injury-related biomarkers with indices of TBI severity and outcomes using data from 159 participants in the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot Study. ⋯ In principal components analysis, principal component (PC)1, comprised of Ang1, bFGF, P-selectin, VEGF-C, VEGF-A, and Tie2, was associated with less severe injury (age-adjusted odds ratio [OR]: 0.63, 95% confidence interval [CI]: 0.44-0.88 for head computer tomography [CT] positive vs. negative) and PC2 (Ang-2, E-selectin, Flt-1, placental growth factor, thrombomodulin, and vascular cell adhesion protein 1) was associated with greater injury severity (age-adjusted OR: 2.29, 95% CI: 1.49-3.69 for Glasgow Coma Scale [GCS] 3-12 vs. 13-15 and age-adjusted OR 1.59, 95% CI: 1.11-2.32 for head CT positive vs. negative). Neither individual biomarkers nor PCs were associated with outcomes in adjusted models (all p > 0.05). In conclusion, in this trauma-center based population of acute TBI patients, biomarkers of microvascular injury were associated with TBI severity.
-
Journal of neurotrauma · Aug 2023
Alzheimer's Disease-Related Dementias Summit 2022: National research priorities for the investigation of post-traumatic brain injury Alzheimer's Disease and Related Dementias.
Traumatic Brain Injury (TBI) is a risk factor for Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD) and otherwise classified post-traumatic neurodegeneration (PTND). Targeted research is needed to elucidate the circumstances and mechanisms through which TBI contributes to the initiation, development, and progression of AD/ADRD pathologies including multiple etiology dementia (MED). The National Institutes of Health hosts triennial ADRD summits to inform a national research agenda, and TBI was included for a second time in 2022. ⋯ Refined and new recommendations were presented during the MED special topic session at the virtual ADRD Summit in March 2022. Final research recommendations incorporating broad stakeholder input are organized into four priority areas as follows: (1) Promote interdisciplinary collaboration and data harmonization to accelerate progress of rigorous, clinically meaningful research; (2) Characterize clinical and biological phenotypes of PTND associated with varied lifetime TBI histories in diverse populations to validate multimodal biomarkers; (3) Establish and enrich infrastructure to support multimodal longitudinal studies of individuals with varied TBI exposure histories and standardized methods including common data elements (CDEs) for ante-mortem and post-mortem clinical and neuropathological characterization; and (4) Support basic and translational research to elucidate mechanistic pathways, development, progression, and clinical manifestations of post-TBI AD/ADRDs. Recommendations conceptualize TBI as a contributor to MED and emphasize the unique opportunity to study AD/ADRD following known exposure, to inform disease mechanisms and treatment targets for shared common AD/ADRD pathways.
-
Journal of neurotrauma · Aug 2023
Temporal network architectures of neurocognitive functioning and psychological symptoms in collegiate athletes following concussion.
Sport-related concussion (SRC) is associated with several post-injury consequences, including neurocognitive decrements and psychological distress. Yet, how these clinical markers interact with each other, the magnitude of their interrelationships, and how they may vary over time following SRC are not well understood. Network analysis has been proposed as a statistical and psychometric method to conceptualize and map the complex interplay of interactions between observed variables (e.g., neurocognitive functioning and psychological symptoms). ⋯ The effect sizes of these changes ranged from 0.126 (small) to 0.616 (medium). This research suggests that significant improvements in symptoms of psychological distress appear necessary to drive related improvements in neurocognitive functioning and vice versa. Therefore, clinical interventions should consider the importance of managing psychological distress during the acute care of individuals with SRC to help ameliorate negative outcomes.