Behavioural pharmacology
-
Behavioural pharmacology · Oct 2016
ReviewCannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention.
There is substantial evidence from studies in humans and animal models for a role of the endocannabinoid system in the control of emotional states. Several studies have shown an association between exposure to trauma and substance use. Specifically, it has been shown that there is increased prevalence of cannabis use in post-traumatic stress disorder (PTSD) patients and vice versa. ⋯ There is a need for large-scale clinical trials examining the potential decrease in PTSD symptomatology with the use of cannabis. In animal models, there is a need for a better understanding of the mechanism of action and efficacy of cannabis. Nevertheless, the end result of the current clinical and preclinical data is that cannabinoid agents may offer therapeutic benefits for PTSD.
-
Behavioural pharmacology · Jun 2016
Comparative StudyPharmacological modulation of neuropathic pain-related depression of behavior: effects of morphine, ketoprofen, bupropion and [INCREMENT]9-tetrahydrocannabinol on formalin-induced depression of intracranial self-stimulation in rats.
Neuropathic pain is often associated with behavioral depression. Intraplantar formalin produces sustained, neuropathy-associated depression of intracranial self-stimulation (ICSS) in rats. This study evaluated pharmacological modulation of formalin-induced ICSS depression. ⋯ The failure of ketoprofen to alter formalin effects suggests that formalin effects result from neuropathy rather than inflammation. The effectiveness of morphine and bupropion to reverse formalin effects agrees with other evidence that these drugs block pain-depressed behavior in rats and relieve neuropathic pain in humans. The effects of THC suggest general behavioral suppression and do not support the use of THC to treat neuropathic pain.
-
Behavioural pharmacology · Apr 2016
Separate and combined effects of gabapentin and [INCREMENT]9-tetrahydrocannabinol in humans discriminating [INCREMENT]9-tetrahydrocannabinol.
The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. ⋯ When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids.
-
Behavioural pharmacology · Oct 2015
Mice undergoing neuropathic pain induce anxiogenic-like effects and hypernociception in cagemates.
Rodents can recognize pain-related responses in conspecifics. Therefore, cohabitation with a conspecific animal with chronic pain can potentially promote a stressful situation, which can trigger behavioral changes such as anxiety and depression and alter nociceptive responses. In this study we investigated the effect of cohabitation with a mouse undergoing sciatic nerve constriction (neuropathic pain model). ⋯ After 14 days, the cagemates were evaluated using behavioral tests. Social interaction with a conspecific undergoing constriction of the sciatic nerve induced hypernociception and increased anxiety-related responses, whereas in depression tests inconclusive responses and no changes in corticosterone levels were found. In conclusion, cohabitation with suffering conspecifics induces changes in nociceptive responses, as well as in affective responses including anxiety.
-
Behavioural pharmacology · Aug 2015
Antinociceptive activity of astragaloside IV in the animal model of chronic constriction injury.
To investigate the applicability of astragaloside IV (AG) for the treatment of refractory neuropathic pain, we systemically evaluated the antinociceptive activity of AG in the animal model of chronic constriction injury. We studied behaviors, electrophysiology, and biochemistry from day 2 to day 23 after the surgery. ⋯ Moreover, results from immunoelectron microscope showed that glial cell-derived neurotrophic factor family receptor α1 induced by AG could form a circular band in the myelin debris between the injured axons and Schwann cells, contributing toward restoration of the damaged nerve. In conclusion, in our animal model, AG effectively inhibited the neuropathic pain induced by chronic constriction injury.