European radiology
-
To develop and validate a radiomics model for predicting 2019 novel coronavirus (COVID-19) pneumonia. ⋯ • A radiomics model showed good performance for prediction 2019 novel coronavirus pneumonia and favorable discrimination for other types of pneumonia on CT images. • A central or peripheral distribution, a maximum lesion range > 10 cm, the involvement of all five lobes, hilar and mediastinal lymph node enlargement, and no pleural effusion is associated with an increased risk of 2019 novel coronavirus pneumonia. • A radiomics model was superior to a clinical model in predicting 2019 novel coronavirus pneumonia.
-
To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insignificant prostate cancer (PCa). ⋯ • Quantitative imaging features differ between normal and malignant tissue of the peripheral zone in prostate cancer. • Radiomic feature analysis of clinical routine multiparametric MRI has the potential to improve the stratification of clinically significant versus insignificant prostate cancer lesions in the peripheral zone. • Certain combinations of standard multiparametric MRI reporting and assessment categories with feature subsets and machine learning algorithms reduced the diagnostic performance over standard clinical assessment categories alone.
-
To develop an automatic method for identification and segmentation of clinically significant prostate cancer in low-risk patients and to evaluate the performance in a routine clinical setting. ⋯ • Clinically significant prostate cancer identification and segmentation on multi-parametric MRI is feasible in low-risk patients using a deep neural network. • The deep neural network for significant prostate cancer localization performs better for lesions with larger volumes sizes (> 0.5 cc) as compared to small lesions (> 0.03 cc). • For the evaluation of automatic prostate cancer segmentation methods in the active surveillance cohort, the large discordance group (MRI positive, targeted biopsy negative) should be included.
-
To develop a fully automated AI system to quantitatively assess the disease severity and disease progression of COVID-19 using thick-section chest CT images. ⋯ • A deep learning-based AI system was able to accurately segment the infected lung regions by COVID-19 using the thick-section CT scans (Dice coefficient ≥ 0.74). • The computed imaging biomarkers were able to distinguish between the non-severe and severe COVID-19 stages (area under the receiver operating characteristic curve 0.97). • The infection volume changes computed by the AI system were able to assess the COVID-19 progression (Cohen's kappa 0.8220).